REAL: Response Embedding-based Alignment for LLMs
- URL: http://arxiv.org/abs/2409.17169v2
- Date: Thu, 17 Oct 2024 00:35:30 GMT
- Title: REAL: Response Embedding-based Alignment for LLMs
- Authors: Honggen Zhang, Xufeng Zhao, Igor Molybog, June Zhang,
- Abstract summary: We propose a strategy for sampling a high-quality training dataset that focuses on acquiring the most informative response pairs.
Experimental results indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs.
Our findings suggest that focusing on less similar pairs can improve the efficiency of LLM alignment, saving up to 65% of annotators' work.
- Score: 1.9513983244114355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models (LLMs) to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization rely on pairs of AI-generated responses ranked according to human feedback. The labeling process is the most labor-intensive and costly part of the alignment pipeline, and improving its efficiency would have a meaningful impact on AI development. We propose a strategy for sampling a high-quality training dataset that focuses on acquiring the most informative response pairs for labeling out of a set of AI-generated responses. Experimental results on synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. We also applied our method to the real-world dataset SHP2, selecting optimal pairs from multiple responses. The model aligned on dissimilar response pairs obtained the best win rate on the dialogue task. Our findings suggest that focusing on less similar pairs can improve the efficiency of LLM alignment, saving up to 65% of annotators' work.
Related papers
- A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.
With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)
Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.
High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Reward Difference Optimization For Sample Reweighting In Offline RLHF [18.62836654699957]
Current offline RLHF only captures the "ordinal relationship" between responses, overlooking the crucial aspect of how much one is preferred over the others.
We propose a simple yet effective solution called Reward Difference Optimization, shorted as RDO.
Experiments with 7B LLMs on the HH and TL;DR datasets substantiate the effectiveness of our method in both automatic metrics and human evaluation.
arXiv Detail & Related papers (2024-08-18T07:04:16Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
Linear alignment is a novel algorithm that aligns language models with human preferences in one single inference step.
Experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment.
arXiv Detail & Related papers (2024-01-21T10:46:23Z) - Preference Ranking Optimization for Human Alignment [90.6952059194946]
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values.
Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment.
We propose Preference Ranking Optimization (PRO) as an efficient SFT algorithm to fine-tune LLMs for human alignment.
arXiv Detail & Related papers (2023-06-30T09:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.