Transfer learning for financial data predictions: a systematic review
- URL: http://arxiv.org/abs/2409.17183v1
- Date: Tue, 24 Sep 2024 20:52:32 GMT
- Title: Transfer learning for financial data predictions: a systematic review
- Authors: V. Lanzetta
- Abstract summary: Financial time series data pose significant challenges for accurate stock price prediction.
Traditional statistical methodologies made assumptions, such as linearity and normality, which are not suitable for the non-linear nature of financial time series.
Machine learning methodologies are able to capture non linear relationship in the data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Literature highlighted that financial time series data pose significant
challenges for accurate stock price prediction, because these data are
characterized by noise and susceptibility to news; traditional statistical
methodologies made assumptions, such as linearity and normality, which are not
suitable for the non-linear nature of financial time series; on the other hand,
machine learning methodologies are able to capture non linear relationship in
the data. To date, neural network is considered the main machine learning tool
for the financial prices prediction. Transfer Learning, as a method aimed at
transferring knowledge from source tasks to target tasks, can represent a very
useful methodological tool for getting better financial prediction capability.
Current reviews on the above body of knowledge are mainly focused on neural
network architectures, for financial prediction, with very little emphasis on
the transfer learning methodology; thus, this paper is aimed at going deeper on
this topic by developing a systematic review with respect to application of
Transfer Learning for financial market predictions and to challenges/potential
future directions of the transfer learning methodologies for stock market
predictions.
Related papers
- AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Rethinking Importance Weighting for Transfer Learning [71.81262398144946]
Key assumption in supervised learning is that training and test data follow the same probability distribution.
As real-world machine learning tasks are becoming increasingly complex, novel approaches are explored to cope with such challenges.
arXiv Detail & Related papers (2021-12-19T14:35:25Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
We propose a novel one-dimensional convolutional neural networks (CNN) model to predict financial market movement.
The customized one-dimensional convolutional layers scan financial trading data through time, while different types of data, such as prices and volume, share parameters ( Kernels) with each other.
Our model automatically extracts features instead of using traditional technical indicators.
arXiv Detail & Related papers (2021-04-05T19:36:48Z) - A Stochastic Time Series Model for Predicting Financial Trends using NLP [4.081440927534578]
Recent advancements in deep neural network technology allow researchers to develop highly accurate models to predict financial trends.
We propose a novel deep learning model called ST-GAN, or Time-series Generative Adversarial Network.
We utilize cutting-edge technology like the Generative Adversarial Network (GAN) to learn the correlations among textual and numerical data over time.
arXiv Detail & Related papers (2021-02-02T04:03:01Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
We propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors.
We demonstrate the efficacy of our method on U.S. and Japanese stock market data.
arXiv Detail & Related papers (2020-12-14T04:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.