Towards More Relevant Product Search Ranking Via Large Language Models: An Empirical Study
- URL: http://arxiv.org/abs/2409.17460v1
- Date: Thu, 26 Sep 2024 01:38:05 GMT
- Title: Towards More Relevant Product Search Ranking Via Large Language Models: An Empirical Study
- Authors: Qi Liu, Atul Singh, Jingbo Liu, Cun Mu, Zheng Yan,
- Abstract summary: Large Language Models (LLMs) are used for both label and feature generation in model training.
We introduce different sigmoid transformations on the LLM outputs to polarize relevance scores in labeling.
Our work sheds light on advanced strategies for integrating LLMs into e-commerce product search ranking model training.
- Score: 14.826942979030356
- License:
- Abstract: Training Learning-to-Rank models for e-commerce product search ranking can be challenging due to the lack of a gold standard of ranking relevance. In this paper, we decompose ranking relevance into content-based and engagement-based aspects, and we propose to leverage Large Language Models (LLMs) for both label and feature generation in model training, primarily aiming to improve the model's predictive capability for content-based relevance. Additionally, we introduce different sigmoid transformations on the LLM outputs to polarize relevance scores in labeling, enhancing the model's ability to balance content-based and engagement-based relevances and thus prioritize highly relevant items overall. Comprehensive online tests and offline evaluations are also conducted for the proposed design. Our work sheds light on advanced strategies for integrating LLMs into e-commerce product search ranking model training, offering a pathway to more effective and balanced models with improved ranking relevance.
Related papers
- Explainable LLM-driven Multi-dimensional Distillation for E-Commerce Relevance Learning [20.569157915157817]
We propose an Explainable LLM-driven Multi-dimensional Distillation framework for e-commerce relevance learning.
Our proposed framework significantly enhances e-commerce relevance learning performance and user experience.
arXiv Detail & Related papers (2024-11-20T05:30:15Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search.
We present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale.
Our findings have immediate implications for the growing field of relevance judgment automation in product search.
arXiv Detail & Related papers (2024-06-01T00:52:41Z) - Optimizing E-commerce Search: Toward a Generalizable and Rank-Consistent Pre-Ranking Model [13.573766789458118]
In large e-commerce platforms, the pre-ranking phase is crucial for filtering out the bulk of products in advance for the downstream ranking module.
We propose a novel method: a Generalizable and RAnk-ConsistEnt Pre-Ranking Model (GRACE), which achieves: 1) Ranking consistency by introducing multiple binary classification tasks that predict whether a product is within the top-k results as estimated by the ranking model, which facilitates the addition of learning objectives on common point-wise ranking models; 2) Generalizability through contrastive learning of representation for all products by pre-training on a subset of ranking product embeddings
arXiv Detail & Related papers (2024-05-09T07:55:52Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Knowledge Graph Completion Models are Few-shot Learners: An Empirical
Study of Relation Labeling in E-commerce with LLMs [16.700089674927348]
Large Language Models (LLMs) have shown surprising results in numerous natural language processing tasks.
This paper investigates their powerful learning capabilities in natural language and effectiveness in predicting relations between product types with limited labeled data.
Our results show that LLMs significantly outperform existing KG completion models in relation labeling for e-commerce KGs and exhibit performance strong enough to replace human labeling.
arXiv Detail & Related papers (2023-05-17T00:08:36Z) - Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agents [56.104476412839944]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.