TA-Cleaner: A Fine-grained Text Alignment Backdoor Defense Strategy for Multimodal Contrastive Learning
- URL: http://arxiv.org/abs/2409.17601v2
- Date: Tue, 8 Oct 2024 03:11:59 GMT
- Title: TA-Cleaner: A Fine-grained Text Alignment Backdoor Defense Strategy for Multimodal Contrastive Learning
- Authors: Yuan Xun, Siyuan Liang, Xiaojun Jia, Xinwei Liu, Xiaochun Cao,
- Abstract summary: We propose a fine-grained textbfText textbfAlignment textbfCleaner (TA-Cleaner) to cut off feature connections of backdoor triggers.
TA-Cleaner achieves state-of-the-art defensiveness among finetuning-based defense techniques.
- Score: 53.766434746801366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained large models for multimodal contrastive learning, such as CLIP, have been widely recognized in the industry as highly susceptible to data-poisoned backdoor attacks. This poses significant risks to downstream model training. In response to such potential threats, finetuning offers a simpler and more efficient defense choice compared to retraining large models with augmented data. In the supervised learning domain, fine-tuning defense strategies can achieve excellent defense performance. However, in the unsupervised and semi-supervised domain, we find that when CLIP faces some complex attack techniques, the existing fine-tuning defense strategy, CleanCLIP, has some limitations on defense performance. The synonym substitution of its text-augmentation is insufficient to enhance the text feature space. To compensate for this weakness, we improve it by proposing a fine-grained \textbf{T}ext \textbf{A}lignment \textbf{C}leaner (TA-Cleaner) to cut off feature connections of backdoor triggers. We randomly select a few samples for positive and negative subtext generation at each epoch of CleanCLIP, and align the subtexts to the images to strengthen the text self-supervision. We evaluate the effectiveness of our TA-Cleaner against six attack algorithms and conduct comprehensive zero-shot classification tests on ImageNet1K. Our experimental results demonstrate that TA-Cleaner achieves state-of-the-art defensiveness among finetuning-based defense techniques. Even when faced with the novel attack technique BadCLIP, our TA-Cleaner outperforms CleanCLIP by reducing the ASR of Top-1 and Top-10 by 52.02\% and 63.88\%, respectively.
Related papers
- Improving Adversarial Robustness via Decoupled Visual Representation Masking [65.73203518658224]
In this paper, we highlight two novel properties of robust features from the feature distribution perspective.
We find that state-of-the-art defense methods aim to address both of these mentioned issues well.
Specifically, we propose a simple but effective defense based on decoupled visual representation masking.
arXiv Detail & Related papers (2024-06-16T13:29:41Z) - Fight Back Against Jailbreaking via Prompt Adversarial Tuning [23.55544992740663]
Large Language Models (LLMs) are susceptible to jailbreaking attacks.
We propose an approach named Prompt Adversarial Tuning (PAT) that trains a prompt control attached to the user prompt as a guard prefix.
Our method is effective against both grey-box and black-box attacks, reducing the success rate of advanced attacks to nearly 0%.
arXiv Detail & Related papers (2024-02-09T09:09:39Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Detection and Mitigation of Byzantine Attacks in Distributed Training [24.951227624475443]
An abnormal Byzantine behavior of the worker nodes can derail the training and compromise the quality of the inference.
Recent work considers a wide range of attack models and has explored robust aggregation and/or computational redundancy to correct the distorted gradients.
In this work, we consider attack models ranging from strong ones: $q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak ones: $q$ randomly chosen adversaries with limited collusion abilities.
arXiv Detail & Related papers (2022-08-17T05:49:52Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
This research aims to design a defense model that is robust within a certain bound against both seen and unseen adversarial attacks.
The proposed defense model is evaluated on the MNIST, CIFAR-10, and Tiny ImageNet databases.
The proposed algorithm is attack agnostic, i.e. it does not require any knowledge of the attack algorithm.
arXiv Detail & Related papers (2020-10-25T23:14:26Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.