A Comprehensive Review of TLSNotary Protocol
- URL: http://arxiv.org/abs/2409.17670v2
- Date: Fri, 27 Sep 2024 09:21:43 GMT
- Title: A Comprehensive Review of TLSNotary Protocol
- Authors: Maciej Kalka, Marek Kirejczyk,
- Abstract summary: We investigate the TLSNotary protocol, which aim to enable the Client to obtain proof of provenance for data from TLS session.
To achieve such proofs without any Server-side adjustments or permissions, the power of secure multi-party computation (MPC) together with zero knowledge proofs is used.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transport Layer Security (TLS) protocol is a cryptographic protocol designed to secure communication over the internet. The TLS protocol has become a fundamental in secure communication, most commonly used for securing web browsing sessions. In this work, we investigate the TLSNotary protocol, which aim to enable the Client to obtain proof of provenance for data from TLS session, while getting as much as possible from the TLS security properties. To achieve such proofs without any Server-side adjustments or permissions, the power of secure multi-party computation (MPC) together with zero knowledge proofs is used to extend the standard TLS Protocol. To make the compliacted landscape of MPC as comprehensible as possible we first introduce the cryptographic primitives required to understand the TLSNotary protocol and go through standard TLS protocol. Finally, we look at the TLSNotary protocol in detail.
Related papers
- Misbinding Raw Public Keys to Identities in TLS [1.821556502071398]
This paper examines the security of TLS when using Raw Public Key (RPK) authentication.
This mode has not been as extensively studied as X.509 certificates and Pre-Shared Keys (PSK)
We develop a formal model of TLS RPK using applied pi calculus and the ProVerif verification tool, revealing that the RPK mode is susceptible to identity misbinding attacks.
arXiv Detail & Related papers (2024-11-14T19:28:09Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.
PLD combines PLS with deception technologies to actively counteract wiretapping attempts.
We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Ejafa_protocol: A custom INC secure protocol [0.0]
The protocol incorporates modern cryptographic primitives, including X25519 for key exchange and ChaCha20 for encryption.
A key feature of the protocol is its adaptability to resource-constrained environments without compromising on security.
arXiv Detail & Related papers (2024-01-05T12:51:19Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP) is an improvement of the Push-Button configuration (PBC) standard.
TEP relies on the Tamper-Evident Announcement (TEA), which guarantees that an adversary can neither tamper a transmitted message without being detected, nor hide the fact that the message has been sent.
This paper provides a comprehensive overview of the TEP protocol, including all information needed to understand how it works.
arXiv Detail & Related papers (2023-11-24T18:54:00Z) - GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher [85.18213923151717]
Experimental results show certain ciphers succeed almost 100% of the time to bypass the safety alignment of GPT-4 in several safety domains.
We propose a novel SelfCipher that uses only role play and several demonstrations in natural language to evoke this capability.
arXiv Detail & Related papers (2023-08-12T04:05:57Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Automated Attack Synthesis by Extracting Finite State Machines from
Protocol Specification Documents [25.871916915930996]
We suggest a data-driven approach for extracting finite state machines (FSMs) from RFC documents.
Unlike off-the-shelf NLP tools, we suggest a data-driven approach for extracting FSMs from RFC documents.
We show the generalizability of our FSM extraction by using RFCs for six different protocols: BGPv4, DCCP,.
SCTP and TCP.
arXiv Detail & Related papers (2022-02-18T23:27:29Z) - Improving Sign Language Translation with Monolingual Data by Sign
Back-Translation [105.83166521438463]
We propose a sign back-translation (SignBT) approach, which incorporates massive spoken language texts into sign training.
With a text-to-gloss translation model, we first back-translate the monolingual text to its gloss sequence.
Then, the paired sign sequence is generated by splicing pieces from an estimated gloss-to-sign bank at the feature level.
arXiv Detail & Related papers (2021-05-26T08:49:30Z) - Machine Learning Interpretability Meets TLS Fingerprinting [5.179808182296037]
We propose a framework to systematically find the most vulnerable information fields in a network protocol.
focusing on the transport layer security (TLS) protocol, we perform different machine-learning-based fingerprinting attacks on the collected data.
By employing the interpretation techniques developed in the machine learning community and applying our framework, we find the most vulnerable information fields in the TLS protocol.
arXiv Detail & Related papers (2020-11-12T10:37:45Z) - Composable Security for Multipartite Entanglement Verification [3.4806267677524896]
We present a composably secure protocol allowing $n$ parties to test an entanglement generation resource controlled by a possibly dishonest party.
The test consists only in local quantum operations and authenticated classical communication once a state is shared among them.
Our protocol can typically be used as a subroutine in a Quantum Internet, to securely share a GHZ state among the network before performing a communication or computation protocol.
arXiv Detail & Related papers (2020-04-16T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.