Leveraging Anthropometric Measurements to Improve Human Mesh Estimation and Ensure Consistent Body Shapes
- URL: http://arxiv.org/abs/2409.17671v3
- Date: Thu, 19 Dec 2024 08:19:41 GMT
- Title: Leveraging Anthropometric Measurements to Improve Human Mesh Estimation and Ensure Consistent Body Shapes
- Authors: Katja Ludwig, Julian Lorenz, Daniel Kienzle, Tuan Bui, Rainer Lienhart,
- Abstract summary: We find that SOTA 3D human pose estimation (HPE) models outperform HME models regarding the precision of the estimated 3D keypoint positions.
We create a model called A2B that converts given anthropometric measurements to basic body shape parameters of human mesh models.
- Score: 12.932412290302258
- License:
- Abstract: The basic body shape (i.e., the body shape in T-pose) of a person does not change within a single video. However, most SOTA human mesh estimation (HME) models output a slightly different, thus inconsistent basic body shape for each video frame. Furthermore, we find that SOTA 3D human pose estimation (HPE) models outperform HME models regarding the precision of the estimated 3D keypoint positions. We solve the problem of inconsistent body shapes by leveraging anthropometric measurements like taken by tailors from humans. We create a model called A2B that converts given anthropometric measurements to basic body shape parameters of human mesh models. We obtain superior and consistent human meshes by combining the A2B model results with the keypoints of 3D HPE models using inverse kinematics. We evaluate our approach on challenging datasets like ASPset or fit3D, where we can lower the MPJPE by over 30 mm compared to SOTA HME models. Further, replacing estimates of the body shape parameters from existing HME models with A2B results not only increases the performance of these HME models, but also guarantees consistent body shapes.
Related papers
- CameraHMR: Aligning People with Perspective [54.05758012879385]
We address the challenge of accurate 3D human pose and shape estimation from monocular images.
Existing training datasets containing real images with pseudo ground truth (pGT) use SMPLify to fit SMPL to sparse 2D joint locations.
We make two contributions that improve pGT accuracy.
arXiv Detail & Related papers (2024-11-12T19:12:12Z) - Neural Localizer Fields for Continuous 3D Human Pose and Shape Estimation [32.30055363306321]
We propose a paradigm for seamlessly unifying different human pose and shape-related tasks and datasets.
Our formulation is centered on the ability to query any arbitrary point of the human volume, and obtain its estimated location in 3D.
arXiv Detail & Related papers (2024-07-10T10:44:18Z) - Cloth2Body: Generating 3D Human Body Mesh from 2D Clothing [54.29207348918216]
Cloth2Body needs to address new and emerging challenges raised by the partial observation of the input and the high diversity of the output.
We propose an end-to-end framework that can accurately estimate 3D body mesh parameterized by pose and shape from a 2D clothing image.
As shown by experimental results, the proposed framework achieves state-of-the-art performance and can effectively recover natural and diverse 3D body meshes from 2D images.
arXiv Detail & Related papers (2023-09-28T06:18:38Z) - Accurate 3D Body Shape Regression using Metric and Semantic Attributes [55.58629009876271]
We show that 3D body shape regression from images can be trained from easy-to-obtain anthropometric measurements and linguistic shape attributes.
This is the first demonstration that 3D body shape regression from images can be trained from easy-to-obtain anthropometric measurements and linguistic shape attributes.
arXiv Detail & Related papers (2022-06-14T17:54:49Z) - Detailed Avatar Recovery from Single Image [50.82102098057822]
This paper presents a novel framework to recover emphdetailed avatar from a single image.
We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation framework.
Our method can restore detailed human body shapes with complete textures beyond skinned models.
arXiv Detail & Related papers (2021-08-06T03:51:26Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z) - HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose
and Shape Estimation [60.35776484235304]
This work attempts to address the uncertainty of lifting the detected 2D joints to the 3D space by introducing an intermediate state-Part-Centric Heatmap Triplets (HEMlets)
The HEMlets utilize three joint-heatmaps to represent the relative depth information of the end-joints for each skeletal body part.
A Convolutional Network (ConvNet) is first trained to predict HEMlets from the input image, followed by a volumetric joint-heatmap regression.
arXiv Detail & Related papers (2020-03-10T04:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.