Spatial Hierarchy and Temporal Attention Guided Cross Masking for Self-supervised Skeleton-based Action Recognition
- URL: http://arxiv.org/abs/2409.17951v1
- Date: Thu, 26 Sep 2024 15:28:25 GMT
- Title: Spatial Hierarchy and Temporal Attention Guided Cross Masking for Self-supervised Skeleton-based Action Recognition
- Authors: Xinpeng Yin, Wenming Cao,
- Abstract summary: We introduce a hierarchy and attention guided cross-masking framework (HA-CM) that applies masking to skeleton sequences from both spatial and temporal perspectives.
In spatial graphs, we utilize hyperbolic space to maintain joint distinctions and effectively preserve the hierarchical structure of high-dimensional skeletons.
In temporal flows, we substitute traditional distance metrics with the global attention of joints for masking, addressing the convergence of distances in high-dimensional space and the lack of a global perspective.
- Score: 4.036669828958854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In self-supervised skeleton-based action recognition, the mask reconstruction paradigm is gaining interest in enhancing model refinement and robustness through effective masking. However, previous works primarily relied on a single masking criterion, resulting in the model overfitting specific features and overlooking other effective information. In this paper, we introduce a hierarchy and attention guided cross-masking framework (HA-CM) that applies masking to skeleton sequences from both spatial and temporal perspectives. Specifically, in spatial graphs, we utilize hyperbolic space to maintain joint distinctions and effectively preserve the hierarchical structure of high-dimensional skeletons, employing joint hierarchy as the masking criterion. In temporal flows, we substitute traditional distance metrics with the global attention of joints for masking, addressing the convergence of distances in high-dimensional space and the lack of a global perspective. Additionally, we incorporate cross-contrast loss based on the cross-masking framework into the loss function to enhance the model's learning of instance-level features. HA-CM shows efficiency and universality on three public large-scale datasets, NTU-60, NTU-120, and PKU-MMD. The source code of our HA-CM is available at https://github.com/YinxPeng/HA-CM-main.
Related papers
- Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - GaitASMS: Gait Recognition by Adaptive Structured Spatial Representation
and Multi-Scale Temporal Aggregation [2.0444600042188448]
Gait recognition is one of the most promising video-based biometric technologies.
We propose a novel gait recognition framework, denoted as GaitASMS.
It can effectively extract the adaptive structured spatial representations and naturally aggregate the multi-scale temporal information.
arXiv Detail & Related papers (2023-07-29T13:03:17Z) - Self-supervised Action Representation Learning from Partial
Spatio-Temporal Skeleton Sequences [29.376328807860993]
We propose a Partial Spatio-Temporal Learning (PSTL) framework to exploit the local relationship between different skeleton joints and video frames.
Our method achieves state-of-the-art performance on NTURGB+D 60, NTURGBMM+D 120 and PKU-D under various downstream tasks.
arXiv Detail & Related papers (2023-02-17T17:35:05Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE) are challenging to explore in large-scale 3D point clouds.
We propose a textbfGenerative textbfDecoder for MAE (GD-MAE) to automatically merges the surrounding context.
We demonstrate the efficacy of the proposed method on several large-scale benchmarks: KITTI, and ONCE.
arXiv Detail & Related papers (2022-12-06T14:32:55Z) - SkeletonMAE: Spatial-Temporal Masked Autoencoders for Self-supervised
Skeleton Action Recognition [13.283178393519234]
Self-supervised skeleton-based action recognition has attracted more attention.
With utilizing the unlabeled data, more generalizable features can be learned to alleviate the overfitting problem.
We propose a spatial-temporal masked autoencoder framework for self-supervised 3D skeleton-based action recognition.
arXiv Detail & Related papers (2022-09-01T20:54:27Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - SODAR: Segmenting Objects by DynamicallyAggregating Neighboring Mask
Representations [90.8752454643737]
Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks.
We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part.
Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information.
arXiv Detail & Related papers (2022-02-15T13:53:03Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.