Control Industrial Automation System with Large Language Models
- URL: http://arxiv.org/abs/2409.18009v1
- Date: Thu, 26 Sep 2024 16:19:37 GMT
- Title: Control Industrial Automation System with Large Language Models
- Authors: Yuchen Xia, Nasser Jazdi, Jize Zhang, Chaitanya Shah, Michael Weyrich,
- Abstract summary: This paper introduces a framework for integrating large language models with industrial automation systems.
At the core of the framework are an agent system designed for industrial tasks, a structured prompting method, and an event-driven information modeling mechanism.
Our contribution includes a formal system design, proof-of-concept implementation, and a method for generating task-specific datasets.
- Score: 2.2369578015657954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional industrial automation systems require specialized expertise to operate and complex reprogramming to adapt to new processes. Large language models offer the intelligence to make them more flexible and easier to use. However, LLMs' application in industrial settings is underexplored. This paper introduces a framework for integrating LLMs to achieve end-to-end control of industrial automation systems. At the core of the framework are an agent system designed for industrial tasks, a structured prompting method, and an event-driven information modeling mechanism that provides real-time data for LLM inference. The framework supplies LLMs with real-time events on different context semantic levels, allowing them to interpret the information, generate production plans, and control operations on the automation system. It also supports structured dataset creation for fine-tuning on this downstream application of LLMs. Our contribution includes a formal system design, proof-of-concept implementation, and a method for generating task-specific datasets for LLM fine-tuning and testing. This approach enables a more adaptive automation system that can respond to spontaneous events, while allowing easier operation and configuration through natural language for more intuitive human-machine interaction. We provide demo videos and detailed data on GitHub: https://github.com/YuchenXia/LLM4IAS
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation [0.0]
We propose a novel system that integrates Large Language Models (LLMs) for both classifying natural language inputs into corresponding API calls.
Our system allows users to invoke complex software functionalities through simple inputs, improving interaction efficiency and lowering the barrier to software utilization.
arXiv Detail & Related papers (2024-09-18T04:56:52Z) - Incorporating Large Language Models into Production Systems for Enhanced Task Automation and Flexibility [2.3999111269325266]
This paper introduces a novel approach to integrating large language model (LLM) agents into automated production systems.
We organize production operations within a hierarchical framework based on the automation pyramid.
This allows for a scalable and flexible foundation for orchestrating production processes.
arXiv Detail & Related papers (2024-07-11T14:34:43Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks [37.48197934228379]
There is no AutoML system that automates the entire end-to-end model production workflow for computer vision.
We propose a novel request-to-model task, which involves understanding the user's natural language request and executing the entire workflow to output production-ready models.
This empowers non-expert individuals to easily build task-specific models via a user-friendly language interface.
arXiv Detail & Related papers (2024-02-23T14:38:19Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - Towards autonomous system: flexible modular production system enhanced
with large language model agents [0.0]
We present a novel framework that combines large language models (LLMs), digital twins and industrial automation system.
We demonstrate how our implemented prototype can handle un-predefined tasks, plan a production process, and execute the operations.
arXiv Detail & Related papers (2023-04-28T09:42:18Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.