E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
- URL: http://arxiv.org/abs/2409.18111v1
- Date: Thu, 26 Sep 2024 17:53:04 GMT
- Title: E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
- Authors: Ye Liu, Zongyang Ma, Zhongang Qi, Yang Wu, Ying Shan, Chang Wen Chen,
- Abstract summary: We introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale benchmark for open-ended event-level video understanding.
We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks.
Our simple but effective solution demonstrates superior performance in multiple scenarios.
- Score: 57.630136434038384
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.
Related papers
- Towards Event-oriented Long Video Understanding [101.48089908037888]
Event-Bench is an event-oriented long video understanding benchmark built on existing datasets and human annotations.
VIM is a cost-effective method that enhances video MLLMs using merged, event-intensive video instructions.
arXiv Detail & Related papers (2024-06-20T09:14:19Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - SPOT! Revisiting Video-Language Models for Event Understanding [31.49859545456809]
We introduce SPOT Prober, to benchmark existing video-language models's capacities of distinguishing event-level discrepancies.
We evaluate the existing video-language models with these positive and negative captions and find they fail to distinguish most of the manipulated events.
Based on our findings, we propose to plug in these manipulated event captions as hard negative samples and find them effective in enhancing models for event understanding.
arXiv Detail & Related papers (2023-11-21T18:43:07Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
We propose a novel multimodal video benchmark to evaluate the perception and reasoning skills of pre-trained multimodal models.
The Perception Test focuses on skills (Memory, Abstraction, Physics, Semantics) and types of reasoning (descriptive, explanatory, predictive, counterfactual) across video, audio, and text modalities.
The benchmark probes pre-trained models for their transfer capabilities, in a zero-shot / few-shot or limited finetuning regime.
arXiv Detail & Related papers (2023-05-23T07:54:37Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
We propose the atemporal probe (ATP), a new model for video-language analysis.
We characterize the limitations and potential of current video-language benchmarks.
We show that effectively integrating ATP into full video-level temporal models can improve efficiency and state-of-the-art accuracy.
arXiv Detail & Related papers (2022-06-03T17:57:33Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - VIOLIN: A Large-Scale Dataset for Video-and-Language Inference [103.7457132841367]
We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text.
Given a video clip with subtitles aligned as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip.
A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips.
arXiv Detail & Related papers (2020-03-25T20:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.