FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner
- URL: http://arxiv.org/abs/2409.18128v1
- Date: Thu, 26 Sep 2024 17:59:51 GMT
- Title: FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner
- Authors: Wenliang Zhao, Minglei Shi, Xumin Yu, Jie Zhou, Jiwen Lu,
- Abstract summary: Flow-based models tend to produce a straighter sampling trajectory during the sampling process.
We introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time.
FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img)
- Score: 70.90505084288057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building on the success of diffusion models in visual generation, flow-based models reemerge as another prominent family of generative models that have achieved competitive or better performance in terms of both visual quality and inference speed. By learning the velocity field through flow-matching, flow-based models tend to produce a straighter sampling trajectory, which is advantageous during the sampling process. However, unlike diffusion models for which fast samplers are well-developed, efficient sampling of flow-based generative models has been rarely explored. In this paper, we propose a framework called FlowTurbo to accelerate the sampling of flow-based models while still enhancing the sampling quality. Our primary observation is that the velocity predictor's outputs in the flow-based models will become stable during the sampling, enabling the estimation of velocity via a lightweight velocity refiner. Additionally, we introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time. Since FlowTurbo does not change the multi-step sampling paradigm, it can be effectively applied for various tasks such as image editing, inpainting, etc. By integrating FlowTurbo into different flow-based models, we obtain an acceleration ratio of 53.1%$\sim$58.3% on class-conditional generation and 29.8%$\sim$38.5% on text-to-image generation. Notably, FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img), achieving the real-time image generation and establishing the new state-of-the-art. Code is available at https://github.com/shiml20/FlowTurbo.
Related papers
- TD-Paint: Faster Diffusion Inpainting Through Time Aware Pixel Conditioning [8.291380592932333]
Time-aware Diffusion Paint (TD-Paint) is a novel approach that adapts the diffusion process by modeling variable noise levels at the pixel level.
Unlike conventional diffusion-based inpainting models, which require a dedicated architecture or an expensive generation loop, TD-Paint achieves faster sampling times without architectural modifications.
arXiv Detail & Related papers (2024-10-11T23:46:56Z) - Efficient 3D Molecular Generation with Flow Matching and Scale Optimal Transport [43.56824843205882]
Semla is a scalable E(3)-equivariant message passing architecture.
SemlaFlow is trained using flow matching along with scale optimal transport.
Our model produces state-of-the-art results on benchmark datasets with just 100 sampling steps.
arXiv Detail & Related papers (2024-06-11T13:51:51Z) - PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator [73.80050807279461]
Piecewise Rectified Flow (PeRFlow) is a flow-based method for accelerating diffusion models.
PeRFlow achieves superior performance in a few-step generation.
arXiv Detail & Related papers (2024-05-13T07:10:53Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
We propose a novel approach that accelerates the sampling of diffusion models by parallelizing the autoregressive process.
Applying these techniques, we introduce ParaTAA, a universal and training-free parallel sampling algorithm.
Our experiments demonstrate that ParaTAA can decrease the inference steps required by common sequential sampling algorithms by a factor of 4$sim$14 times.
arXiv Detail & Related papers (2024-02-15T14:27:58Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion [88.8198344514677]
We introduce AdaDiff, a framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy gradient method to maximize a carefully designed reward function.
Our approach achieves similar results in terms of visual quality compared to the baseline using a fixed 50 denoising steps.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - AutoDiffusion: Training-Free Optimization of Time Steps and
Architectures for Automated Diffusion Model Acceleration [57.846038404893626]
We propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training.
Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 $times$ 64 with only four steps, compared to 138.66 with DDIM.
arXiv Detail & Related papers (2023-09-19T08:57:24Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.