Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
- URL: http://arxiv.org/abs/2409.18303v1
- Date: Thu, 26 Sep 2024 21:20:51 GMT
- Title: Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
- Authors: Paul Weiser, Georg Langs, Wolfgang Bogner, Stanislav Motyka, Bernhard Strasser, Polina Golland, Nalini Singh, Jorg Dietrich, Erik Uhlmann, Tracy Batchelor, Daniel Cahill, Malte Hoffmann, Antoine Klauser, Ovidiu C. Andronesi,
- Abstract summary: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer.
Deep learning ECCENTRIC reconstruction provides 600-fold faster reconstruction than conventional methods.
- Score: 3.3771864230870072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer, which can be mapped non-invasively by Magnetic Resonance Spectroscopic Imaging (MRSI). Advanced MRSI using non-cartesian compressed-sense acquisition enables fast high-resolution metabolic imaging but has lengthy reconstruction times that limits throughput and needs expert user interaction. Here, we present a robust and efficient Deep Learning reconstruction to obtain high-quality metabolic maps. Methods: Fast high-resolution whole-brain metabolic imaging was performed at 3.4 mm$^3$ isotropic resolution with acquisition times between 4:11-9:21 min:s using ECCENTRIC pulse sequence on a 7T MRI scanner. Data were acquired in a high-resolution phantom and 27 human participants, including 22 healthy volunteers and 5 glioma patients. A deep neural network using recurring interlaced convolutional layers with joint dual-space feature representation was developed for deep learning ECCENTRIC reconstruction (Deep-ER). 21 subjects were used for training and 6 subjects for testing. Deep-ER performance was compared to conventional iterative Total Generalized Variation reconstruction using image and spectral quality metrics. Results: Deep-ER demonstrated 600-fold faster reconstruction than conventional methods, providing improved spatial-spectral quality and metabolite quantification with 12%-45% (P<0.05) higher signal-to-noise and 8%-50% (P<0.05) smaller Cramer-Rao lower bounds. Metabolic images clearly visualize glioma tumor heterogeneity and boundary. Conclusion: Deep-ER provides efficient and robust reconstruction for sparse-sampled MRSI. The accelerated acquisition-reconstruction MRSI is compatible with high-throughput imaging workflow. It is expected that such improved performance will facilitate basic and clinical MRSI applications.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Deep Learning-based Intraoperative MRI Reconstruction [0.0]
A deep learning (DL) model was trained on the fastMRI neuro dataset to mimic the data from the iMRI protocol.
A comparative analysis was conducted between the conventional compressed sense (CS) method and the trained DL reconstruction method.
The DL reconstruction was strongly favored or favored over the CS reconstruction for 33/40, 39/40, and 8 of cases for reader 1, 2, and 3, respectively.
arXiv Detail & Related papers (2024-01-23T13:57:50Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
We develop a novel deep learning framework called the coarse-super-resolution-fine network (CoSF-Net) to achieve simultaneous motion estimation and excavating super-resolution in a unified model.
Compared with existing networks and three state-of-the-art conventional algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI with enhanced anatomic features.
arXiv Detail & Related papers (2022-11-21T01:42:51Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z) - 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep
Learning Reconstruction [0.487576911714538]
High-temporal resolution across the whole brain is essential to accurately resolve neural activities in fMRI.
Deep learning (DL) reconstruction techniques have recently gained interest for improving highly-accelerated MRI imaging.
In this study, we utilize a self-supervised physics-guided DL reconstruction on a 5-fold SMS and 4-fold inplane accelerated 7T fMRI data.
arXiv Detail & Related papers (2021-05-12T17:39:16Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.