Influence of bias voltage noise on the Inelastic Cooper-Pair Tunneling Amplifier (ICTA)
- URL: http://arxiv.org/abs/2409.18349v1
- Date: Fri, 27 Sep 2024 00:02:58 GMT
- Title: Influence of bias voltage noise on the Inelastic Cooper-Pair Tunneling Amplifier (ICTA)
- Authors: Ulrich Martel, Romain Albert, Florian Blanchet, Joël Griesmar, Gabriel Ouellet, Hugo Therrien, Naveen Nehra, Nicolas Bourlet, Max Hofheinz,
- Abstract summary: We experimentally show that the ICTA has near-quantum-limited noise as long as the integral voltage bias noise divided by the superconducting flux quantum is below the amplification bandwidth.
We observe a gain of 20 dB with noise below 1.7 times the quantum limit when the full width at half maximum of the integral voltage noise, expressed as frequency, is 5.6 MHz.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally show that the Inelastic Cooper-Pair Tunneling Amplifier (ICTA), implementing a DC-powered parametric amplification scheme, can achieve gain and noise performance similar to that of Josephson parametric amplifiers. Using experimental data and simulations, we show that the ICTA has near-quantum-limited noise as long as the integral voltage bias noise divided by the superconducting flux quantum is below the amplification bandwidth. We observe a gain of 20 dB with noise below 1.7 times the quantum limit when the full width at half maximum of the integral voltage noise, expressed as frequency, is 5.6 MHz.
Related papers
- Broadband parametric amplification in DARTWARS [64.98268713737]
Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth.
The DARTWARS project aims to develop a KITWPA capable of achieving $20,$ dB of amplification.
The measurements revealed an average amplification of approximately $9,$dB across a $2,$GHz bandwidth for a KITWPA spanning $17,$mm in length.
arXiv Detail & Related papers (2024-02-19T10:57:37Z) - Broadband CPW-based impedance-transformed Josephson parametric amplifier [13.002501537530513]
We present a device based on the broadband impedance-transformed Josephson parametric amplifier (IMPA)
The device shows an instantaneous bandwidth of 700(200) MHz for 15(20) dB gain with an average saturation power of -110 dBm and near quantum-limited added noise.
arXiv Detail & Related papers (2023-10-26T01:04:55Z) - Demonstration of a Quantum Noise Limited Traveling-Wave Parametric
Amplifier [0.0]
Recent progress in quantum computing and the development of novel detector technologies for astrophysics is driving the need for high-gain, broadband, and quantum-limited amplifiers.
We present a purely traveling-wave parametric amplifier (TWPA) using an inverted NbTiN microstrip and amorphous Silicon dielectric.
arXiv Detail & Related papers (2023-06-19T15:45:55Z) - Josephson parametric amplifier with Chebyshev gain profile and high
saturation [0.0]
We demonstrate a Josephson parametric amplifier design with a band-pass impedance matching network based on a third-order Chebyshev prototype.
We measure eight amplifiers operating at 4.6 GHz that exhibit gains of 20 dB with less than 1 dB gain ripple and up to 500 MHz bandwidth.
We characterize the system readout efficiency and its signal-to-noise ratio near saturation using a Sycamore processor.
arXiv Detail & Related papers (2023-05-28T22:04:08Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Quantum analysis of second-order effects in superconducting
travelling-wave parametric amplifiers [0.0]
We have performed a quantum mechanical analysis of travelling-wave parametric amplifiers (TWPAs)
We investigate the effect of impedance mismatch, the presence of upper idler modes, the presence of quantum and thermal noise, the generation of squeezed states, and the preservation of pre-squeezed states during amplification.
arXiv Detail & Related papers (2021-04-13T16:50:16Z) - A three-wave mixing kinetic inductance traveling-wave amplifier with
near-quantum-limited noise performance [0.0]
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier.
The noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit.
This KIT is suitable to read large arrays of microwave kinetic inductance detectors and promising for multiplexed superconducting qubit readout.
arXiv Detail & Related papers (2020-07-01T17:41:10Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.