Fairness without Sensitive Attributes via Knowledge Sharing
- URL: http://arxiv.org/abs/2409.18470v1
- Date: Fri, 27 Sep 2024 06:16:14 GMT
- Title: Fairness without Sensitive Attributes via Knowledge Sharing
- Authors: Hongliang Ni, Lei Han, Tong Chen, Shazia Sadiq, Gianluca Demartini,
- Abstract summary: We propose a confidence-based hierarchical classifier structure called "Reckoner" for reliable fair model learning under the assumption of missing sensitive attributes.
Our experimental results show that Reckoner consistently outperforms state-of-the-art baselines in COMPAS dataset and New Adult dataset.
- Score: 13.141672574114597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While model fairness improvement has been explored previously, existing methods invariably rely on adjusting explicit sensitive attribute values in order to improve model fairness in downstream tasks. However, we observe a trend in which sensitive demographic information becomes inaccessible as public concerns around data privacy grow. In this paper, we propose a confidence-based hierarchical classifier structure called "Reckoner" for reliable fair model learning under the assumption of missing sensitive attributes. We first present results showing that if the dataset contains biased labels or other hidden biases, classifiers significantly increase the bias gap across different demographic groups in the subset with higher prediction confidence. Inspired by these findings, we devised a dual-model system in which a version of the model initialised with a high-confidence data subset learns from a version of the model initialised with a low-confidence data subset, enabling it to avoid biased predictions. Our experimental results show that Reckoner consistently outperforms state-of-the-art baselines in COMPAS dataset and New Adult dataset, considering both accuracy and fairness metrics.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
We propose a novel fairness framework that performs debiasing with regard to sensitive attributes and proxy attributes.
Our framework achieves better fairness-accuracy trade-off on unstructured and structured datasets than previous state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-20T11:57:57Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
We propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder.
We use a bias-aware model to capture inherent bias information on sensitive attribute.
We also use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them.
arXiv Detail & Related papers (2022-04-01T15:57:47Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - Regularizing Models via Pointwise Mutual Information for Named Entity
Recognition [17.767466724342064]
We propose a Pointwise Mutual Information (PMI) to enhance generalization ability while outperforming an in-domain performance.
Our approach enables to debias highly correlated word and labels in the benchmark datasets.
For long-named and complex-structure entities, our method can predict these entities through debiasing on conjunction or special characters.
arXiv Detail & Related papers (2021-04-15T05:47:27Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.