Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm for Hybrid Flow Shop Scheduling Problems with Multiple Parallel Batch Processing Stages
- URL: http://arxiv.org/abs/2409.18524v1
- Date: Fri, 27 Sep 2024 08:05:56 GMT
- Title: Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm for Hybrid Flow Shop Scheduling Problems with Multiple Parallel Batch Processing Stages
- Authors: Feige Liu, Xin Li, Chao Lu, Wenying Gong,
- Abstract summary: This study generalizes the problem model, in which users can arbitrarily set certain stages as parallel batch processing stages.
An Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm (AMOEA/D) is designed to simultaneously optimize both makespan and Total Energy Consumption.
The experimental results show that the AMOEA/D is superior to the comparison algorithms in solving the PBHFSP.
- Score: 5.851739146497829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parallel batch processing machines have extensive applications in the semiconductor manufacturing process. However, the problem models in previous studies regard parallel batch processing as a fixed processing stage in the machining process. This study generalizes the problem model, in which users can arbitrarily set certain stages as parallel batch processing stages according to their needs. A Hybrid Flow Shop Scheduling Problem with Parallel Batch Processing Machines (PBHFSP) is solved in this paper. Furthermore, an Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm (AMOEA/D) is designed to simultaneously optimize both makespan and Total Energy Consumption (TEC). Firstly, a hybrid initialization strategy with heuristic rules based on knowledge of PBHFSP is proposed to generate promising solutions. Secondly, the disjunctive graph model has been established based on the knowledge to find the critical-path of PBHFS. Then, a critical-path based neighborhood search is proposed to enhance the exploitation ability of AMOEA/D. Moreover, the search time is adaptively adjusted based on learning experience from Q-learning and Decay Law. Afterward, to enhance the exploration capability of the algorithm, AMOEA/D designs an improved population updating strategy with a weight vector updating strategy. These strategies rematch individuals with weight vectors, thereby maintaining the diversity of the population. Finally, the proposed algorithm is compared with state-of-the-art algorithms. The experimental results show that the AMOEA/D is superior to the comparison algorithms in solving the PBHFSP.
Related papers
- Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
We have developed methods based on Deep Reinforcement Learning (DRL) for both single- and multi-objective optimization.
In this paper, we demonstrate the advantage of our RL-based approach, specifically using Proximal Policy Optimization (PPO)
PPO adapts its search capability via a policy with learnable weights, allowing it to function as both a global and local search method.
arXiv Detail & Related papers (2024-02-16T19:35:58Z) - Hybrid ACO-CI Algorithm for Beam Design problems [0.4397520291340694]
A novel hybrid version of the Ant colony optimization (ACO) method is developed using the sample space reduction technique of the Cohort Intelligence (CI) algorithm.
The proposed work could be investigate for real world applications encompassing domains of engineering, and health care problems.
arXiv Detail & Related papers (2023-03-29T04:37:14Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Solving the vehicle routing problem with deep reinforcement learning [0.0]
This paper focuses on the application of RL for the Vehicle Routing Problem (VRP), a famous problem that belongs to the class of NP-Hard problems.
In a second phase, the neural architecture behind the Actor and Critic has been established, choosing to adopt a neural architecture based on the Convolutional neural networks.
Experiments performed on a wide range of instances show that the algorithm has good generalization capabilities and can reach good solutions in a short time.
arXiv Detail & Related papers (2022-07-30T12:34:26Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control.
This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques.
arXiv Detail & Related papers (2022-02-23T18:11:19Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Batch Sequential Adaptive Designs for Global Optimization [5.825138898746968]
Efficient global optimization (EGO) is one of the most popular SAD methods for expensive black-box optimization problems.
For those multiple points EGO methods, the heavy computation and points clustering are the obstacles.
In this work, a novel batch SAD method, named "accelerated EGO", is forwarded by using a refined sampling/importance resampling (SIR) method.
The efficiency of the proposed SAD is validated by nine classic test functions with dimension from 2 to 12.
arXiv Detail & Related papers (2020-10-21T01:11:35Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Differentiable Expected Hypervolume Improvement for Parallel
Multi-Objective Bayesian Optimization [11.956059322407437]
We leverage recent advances in programming models and hardware acceleration for multi-objective BO using Expected Hyper Improvement (EHVI)
We derive a novel formulation of q-Expected Hyper Improvement (qEHVI), an acquisition function that extends EHVI to the parallel, constrained evaluation setting.
Our empirical evaluation demonstrates that qEHVI is computationally tractable in many practical scenarios and outperforms state-of-the-art multi-objective BO algorithms at a fraction of their wall time.
arXiv Detail & Related papers (2020-06-09T06:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.