Unsupervised Fingerphoto Presentation Attack Detection With Diffusion Models
- URL: http://arxiv.org/abs/2409.18636v1
- Date: Fri, 27 Sep 2024 11:07:48 GMT
- Title: Unsupervised Fingerphoto Presentation Attack Detection With Diffusion Models
- Authors: Hailin Li, Raghavendra Ramachandra, Mohamed Ragab, Soumik Mondal, Yong Kiam Tan, Khin Mi Mi Aung,
- Abstract summary: Smartphone-based contactless fingerphoto authentication has become a reliable alternative to traditional contact-based fingerprint biometric systems.
Despite its convenience, fingerprint authentication through fingerphotos is more vulnerable to presentation attacks.
We propose a novel unsupervised approach based on a state-of-the-art deep-learning-based diffusion model, the Denoising Probabilistic Diffusion Model (DDPM)
The proposed approach detects Presentation Attacks (PA) by calculating the reconstruction similarity between the input and output pairs of the DDPM.
- Score: 8.979820109339286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smartphone-based contactless fingerphoto authentication has become a reliable alternative to traditional contact-based fingerprint biometric systems owing to rapid advances in smartphone camera technology. Despite its convenience, fingerprint authentication through fingerphotos is more vulnerable to presentation attacks, which has motivated recent research efforts towards developing fingerphoto Presentation Attack Detection (PAD) techniques. However, prior PAD approaches utilized supervised learning methods that require labeled training data for both bona fide and attack samples. This can suffer from two key issues, namely (i) generalization:the detection of novel presentation attack instruments (PAIs) unseen in the training data, and (ii) scalability:the collection of a large dataset of attack samples using different PAIs. To address these challenges, we propose a novel unsupervised approach based on a state-of-the-art deep-learning-based diffusion model, the Denoising Diffusion Probabilistic Model (DDPM), which is trained solely on bona fide samples. The proposed approach detects Presentation Attacks (PA) by calculating the reconstruction similarity between the input and output pairs of the DDPM. We present extensive experiments across three PAI datasets to test the accuracy and generalization capability of our approach. The results show that the proposed DDPM-based PAD method achieves significantly better detection error rates on several PAI classes compared to other baseline unsupervised approaches.
Related papers
- Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
Supervised learning-based adversarial attack detection methods rely on a large number of labeled data.
We propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback.
arXiv Detail & Related papers (2024-07-05T09:37:16Z) - Contactless Fingerprint Biometric Anti-Spoofing: An Unsupervised Deep
Learning Approach [0.0]
We introduce an innovative anti-spoofing approach that combines an unsupervised autoencoder with a convolutional block attention module.
The scheme has achieved an average BPCER of 0.96% with an APCER of 1.6% for presentation attacks involving various types of spoofed samples.
arXiv Detail & Related papers (2023-11-07T17:19:59Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Federated Test-Time Adaptive Face Presentation Attack Detection with
Dual-Phase Privacy Preservation [100.69458267888962]
Face presentation attack detection (fPAD) plays a critical role in the modern face recognition pipeline.
Due to legal and privacy issues, training data (real face images and spoof images) are not allowed to be directly shared between different data sources.
We propose a Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-Phase Privacy Preservation framework.
arXiv Detail & Related papers (2021-10-25T02:51:05Z) - Taming Self-Supervised Learning for Presentation Attack Detection:
De-Folding and De-Mixing [42.733666815035534]
Biometric systems are vulnerable to Presentation Attacks performed using various Presentation Attack Instruments (PAIs)
We propose a self-supervised learning-based method, denoted as DF-DM.
DF-DM is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD.
arXiv Detail & Related papers (2021-09-09T08:38:17Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
We propose a robust presentation attack detection (PAD) solution with improved cross-material and cross-sensor generalization.
Specifically, we build on any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization.
We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD.
arXiv Detail & Related papers (2020-04-06T19:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.