MCUBench: A Benchmark of Tiny Object Detectors on MCUs
- URL: http://arxiv.org/abs/2409.18866v1
- Date: Fri, 27 Sep 2024 16:02:56 GMT
- Title: MCUBench: A Benchmark of Tiny Object Detectors on MCUs
- Authors: Sudhakar Sah, Darshan C. Ganji, Matteo Grimaldi, Ravish Kumar, Alexander Hoffman, Honnesh Rohmetra, Ehsan Saboori,
- Abstract summary: MCUBench is a benchmark featuring over 100 YOLO-based object detection models evaluated on the VOC dataset across seven different MCUs.
This benchmark provides detailed data on average precision, latency, RAM, and Flash usage for various input resolutions and YOLO-based one-stage detectors.
- Score: 36.77761421733794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MCUBench, a benchmark featuring over 100 YOLO-based object detection models evaluated on the VOC dataset across seven different MCUs. This benchmark provides detailed data on average precision, latency, RAM, and Flash usage for various input resolutions and YOLO-based one-stage detectors. By conducting a controlled comparison with a fixed training pipeline, we collect comprehensive performance metrics. Our Pareto-optimal analysis shows that integrating modern detection heads and training techniques allows various YOLO architectures, including legacy models like YOLOv3, to achieve a highly efficient tradeoff between mean Average Precision (mAP) and latency. MCUBench serves as a valuable tool for benchmarking the MCU performance of contemporary object detectors and aids in model selection based on specific constraints.
Related papers
- Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors [0.0]
This study presents a benchmark analysis of various YOLO (You Only Look Once) algorithms, from YOLOv3 to the newest addition, YOLO11.
It evaluates their performance on three diverse datasets: Traffic Signs (with varying object sizes), African Wildlife (with diverse aspect ratios and at least one instance of the object per image), and Ships and Vessels (with small-sized objects of a single class)
arXiv Detail & Related papers (2024-10-31T20:45:00Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study focuses on the YOLOv9 object detection model, focusing on its architectural innovations, training methodologies, and performance improvements.
Key advancements, such as the Generalized Efficient Layer Aggregation Network GELAN and Programmable Gradient Information PGI, significantly enhance feature extraction and gradient flow.
This paper provides the first in depth exploration of YOLOv9s internal features and their real world applicability, establishing it as a state of the art solution for real time object detection.
arXiv Detail & Related papers (2024-09-12T07:46:58Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems [0.0873811641236639]
We present YOLOBench, a benchmark comprised of 550+ YOLO-based object detection models on 4 different datasets and 4 different embedded hardware platforms.
We collect accuracy and latency numbers for a variety of YOLO-based one-stage detectors at different model scales by performing a fair, controlled comparison of these detectors with a fixed training environment.
We evaluate training-free accuracy estimators used in neural architecture search on YOLOBench and demonstrate that, while most state-of-the-art zero-cost accuracy estimators are outperformed by a simple baseline like MAC count, some of them can be effectively used to
arXiv Detail & Related papers (2023-07-26T01:51:10Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - RTMDet: An Empirical Study of Designing Real-Time Object Detectors [13.09100888887757]
We develop an efficient real-time object detector that exceeds the YOLO series and is easily for many object recognition tasks.
Together with better training techniques, the resulting object detector achieves, named RTMDet, 52.8% AP on COCO with 300+ FPS on an NVIDIA 3090 GPU.
We hope the experimental results can provide new insights into designing versatile real-time object detectors for many object recognition tasks.
arXiv Detail & Related papers (2022-12-14T18:50:20Z) - Disentangle Your Dense Object Detector [82.22771433419727]
Deep learning-based dense object detectors have achieved great success in the past few years and have been applied to numerous multimedia applications such as video understanding.
However, the current training pipeline for dense detectors is compromised to lots of conjunctions that may not hold.
We propose Disentangled Dense Object Detector (DDOD), in which simple and effective disentanglement mechanisms are designed and integrated into the current state-of-the-art detectors.
arXiv Detail & Related papers (2021-07-07T00:52:16Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.