In-depth Analysis of Privacy Threats in Federated Learning for Medical Data
- URL: http://arxiv.org/abs/2409.18907v1
- Date: Fri, 27 Sep 2024 16:45:35 GMT
- Title: In-depth Analysis of Privacy Threats in Federated Learning for Medical Data
- Authors: Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu,
- Abstract summary: Federated learning is emerging as a promising machine learning technique in the medical field for analyzing medical images.
Recent studies have revealed that the default settings of federated learning may inadvertently expose private training data to privacy attacks.
We make three original contributions to privacy risk analysis and mitigation in federated learning for medical data.
- Score: 2.6986500640871482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning is emerging as a promising machine learning technique in the medical field for analyzing medical images, as it is considered an effective method to safeguard sensitive patient data and comply with privacy regulations. However, recent studies have revealed that the default settings of federated learning may inadvertently expose private training data to privacy attacks. Thus, the intensity of such privacy risks and potential mitigation strategies in the medical domain remain unclear. In this paper, we make three original contributions to privacy risk analysis and mitigation in federated learning for medical data. First, we propose a holistic framework, MedPFL, for analyzing privacy risks in processing medical data in the federated learning environment and developing effective mitigation strategies for protecting privacy. Second, through our empirical analysis, we demonstrate the severe privacy risks in federated learning to process medical images, where adversaries can accurately reconstruct private medical images by performing privacy attacks. Third, we illustrate that the prevalent defense mechanism of adding random noises may not always be effective in protecting medical images against privacy attacks in federated learning, which poses unique and pressing challenges related to protecting the privacy of medical data. Furthermore, the paper discusses several unique research questions related to the privacy protection of medical data in the federated learning environment. We conduct extensive experiments on several benchmark medical image datasets to analyze and mitigate the privacy risks associated with federated learning for medical data.
Related papers
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
This paper addresses the dispersed nature and privacy sensitivity of medical image data by employing a federated learning framework.
The proposed method, FedDP, minimally impacts model accuracy while effectively safeguarding the privacy of cancer pathology image data.
arXiv Detail & Related papers (2024-11-07T08:02:58Z) - Privacy Risks Analysis and Mitigation in Federated Learning for Medical
Images [2.9480813253164535]
Federated learning (FL) is gaining increasing popularity in the medical domain for analyzing medical images.
Recent studies have revealed that the default settings of FL may leak private training data under privacy attacks.
arXiv Detail & Related papers (2023-11-11T18:58:01Z) - Preserving The Safety And Confidentiality Of Data Mining Information In Health Care: A literature review [0.0]
PPDM technique enables the extraction of actionable insight from enormous volume of data.
Disclosing sensitive information infringes on patients' privacy.
This paper aims to conduct a review of related work on privacy-preserving mechanisms, data protection regulations, and mitigating tactics.
arXiv Detail & Related papers (2023-10-30T05:32:15Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Defending Medical Image Diagnostics against Privacy Attacks using
Generative Methods [10.504951891644474]
We develop and evaluate a privacy defense protocol based on using a generative adversarial network (GAN)
We validate the proposed method on retinal diagnostics AI used for diabetic retinopathy that bears the risk of possibly leaking private information.
arXiv Detail & Related papers (2021-03-04T15:02:57Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.