Aligning Robot Navigation Behaviors with Human Intentions and Preferences
- URL: http://arxiv.org/abs/2409.18982v1
- Date: Mon, 16 Sep 2024 03:45:00 GMT
- Title: Aligning Robot Navigation Behaviors with Human Intentions and Preferences
- Authors: Haresh Karnan,
- Abstract summary: This dissertation aims to answer the question: "How can we use machine learning methods to align the navigational behaviors of autonomous mobile robots with human intentions and preferences?"
First, this dissertation introduces a new approach to learning navigation behaviors by imitating human-provided demonstrations of the intended navigation task.
Second, this dissertation introduces two algorithms to enhance terrain-aware off-road navigation for mobile robots by learning visual terrain awareness in a self-supervised manner.
- Score: 2.9914612342004503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the field of machine learning have led to new ways for mobile robots to acquire advanced navigational capabilities. However, these learning-based methods raise the possibility that learned navigation behaviors may not align with the intentions and preferences of people, a problem known as value misalignment. To mitigate this risk, this dissertation aims to answer the question: "How can we use machine learning methods to align the navigational behaviors of autonomous mobile robots with human intentions and preferences?" First, this dissertation addresses this question by introducing a new approach to learning navigation behaviors by imitating human-provided demonstrations of the intended navigation task. This contribution allows mobile robots to acquire autonomous visual navigation capabilities through imitation, using a novel objective function that encourages the agent to align with the human's navigation objectives and penalizes misalignment. Second, this dissertation introduces two algorithms to enhance terrain-aware off-road navigation for mobile robots by learning visual terrain awareness in a self-supervised manner. This contribution enables mobile robots to respect a human operator's preferences for navigating different terrains in urban outdoor environments, while extrapolating these preferences to visually novel terrains by leveraging multi-modal representations. Finally, in the context of robot navigation in human-occupied environments, this dissertation introduces a dataset and an algorithm for robot navigation in a socially compliant manner in both indoor and outdoor environments. In summary, the contributions in this dissertation take significant steps toward addressing the value alignment problem in autonomous navigation, enabling mobile robots to navigate autonomously with objectives that align with human intentions and preferences.
Related papers
- Autonomous Navigation and Collision Avoidance for Mobile Robots: Classification and Review [0.0]
This paper introduces a novel classification for Autonomous Mobile Robots (AMRs)
It focuses on autonomous collision-free navigation and presents the main methods and widely accepted technologies for each phase of the proposed classification.
arXiv Detail & Related papers (2024-10-09T16:56:42Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
We propose a collaborative navigation (CoNav) benchmark.
Our CoNav tackles the critical challenge of constructing a 3D navigation environment with realistic and diverse human activities.
We propose an intention-aware agent for reasoning both long-term and short-term human intention.
arXiv Detail & Related papers (2024-06-04T15:44:25Z) - Real-time Vision-based Navigation for a Robot in an Indoor Environment [0.0]
The system utilizes vision-based techniques and advanced path-planning algorithms to enable the robot to navigate toward the destination while avoiding obstacles.
The findings contribute to the advancement of indoor robot navigation, showcasing the potential of vision-based techniques for real-time, autonomous navigation.
arXiv Detail & Related papers (2023-07-02T21:01:56Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
General goal-conditioned model for vision-based navigation can be trained on data obtained from many distinct but structurally similar robots.
We analyze the necessary design decisions for effective data sharing across robots.
We deploy the trained GNM on a range of new robots, including an under quadrotor.
arXiv Detail & Related papers (2022-10-07T07:26:41Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Group-Aware Robot Navigation in Crowded Environments [8.154698016722815]
This paper explores learning group-aware navigation policies based on dynamic group formation using deep reinforcement learning.
We show that group-aware policies, compared to baseline policies that neglect human groups, achieve greater robot navigation performance.
Our results contribute to the development of social navigation and the integration of mobile robots into human environments.
arXiv Detail & Related papers (2020-12-22T19:04:40Z) - APPLD: Adaptive Planner Parameter Learning from Demonstration [48.63930323392909]
We introduce APPLD, Adaptive Planner Learning from Demonstration, that allows existing navigation systems to be successfully applied to new complex environments.
APPLD is verified on two robots running different navigation systems in different environments.
Experimental results show that APPLD can outperform navigation systems with the default and expert-tuned parameters, and even the human demonstrator themselves.
arXiv Detail & Related papers (2020-03-31T21:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.