Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models
- URL: http://arxiv.org/abs/2409.19128v2
- Date: Tue, 1 Oct 2024 18:40:07 GMT
- Title: Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models
- Authors: Yize Li, Yihua Zhang, Sijia Liu, Xue Lin,
- Abstract summary: We investigate efficient diffusion training from the perspective of dataset pruning.
Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training.
To further improve the generation performance, we employ a class-wise reweighting approach.
- Score: 33.09663675904689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable generation capabilities of Diffusion Models (DMs), conducting training and inference remains computationally expensive. Previous works have been devoted to accelerating diffusion sampling, but achieving data-efficient diffusion training has often been overlooked. In this work, we investigate efficient diffusion training from the perspective of dataset pruning. Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training, where data features are encoded by a surrogate model, and a score criterion is then applied to select the coreset. To further improve the generation performance, we employ a class-wise reweighting approach, which derives class weights through distributionally robust optimization (DRO) over a pre-trained reference DM. For a pixel-wise DM (DDPM) on CIFAR-10, experiments demonstrate the superiority of our methodology over existing approaches and its effectiveness in image synthesis comparable to that of the original full-data model while achieving the speed-up between 2.34 times and 8.32 times. Additionally, our method could be generalized to latent DMs (LDMs), e.g., Masked Diffusion Transformer (MDT) and Stable Diffusion (SD), and achieves competitive generation capability on ImageNet. Code is available here (https://github.com/Yeez-lee/Data-Selection-and-Reweighting-for-Diffusion-Models).
Related papers
- Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
An emerging area of research aims to learn deep generative models with limited training data.
We propose RS-IMLE, a novel approach that changes the prior distribution used for training.
This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods.
arXiv Detail & Related papers (2024-09-26T00:19:42Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Text-to-Image Rectified Flow as Plug-and-Play Priors [52.586838532560755]
Rectified flow is a novel class of generative models that enforces a linear progression from the source to the target distribution.
We show that rectified flow approaches surpass in terms of generation quality and efficiency, requiring fewer inference steps.
Our method also displays competitive performance in image inversion and editing.
arXiv Detail & Related papers (2024-06-05T14:02:31Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Neural Diffusion Models [2.1779479916071067]
We present a generalization of conventional diffusion models that enables defining and learning time-dependent non-linear transformations of data.
NDMs outperform conventional diffusion models in terms of likelihood and produce high-quality samples.
arXiv Detail & Related papers (2023-10-12T13:54:55Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.