From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation
- URL: http://arxiv.org/abs/2409.19132v1
- Date: Fri, 27 Sep 2024 20:26:34 GMT
- Title: From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation
- Authors: Kun Su, Xiulong Liu, Eli Shlizerman,
- Abstract summary: We introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation.
VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively.
Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features.
- Score: 17.95017332858846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video encompasses both visual and auditory data, creating a perceptually rich experience where these two modalities complement each other. As such, videos are a valuable type of media for the investigation of the interplay between audio and visual elements. Previous studies of audio-visual modalities primarily focused on either audio-visual representation learning or generative modeling of a modality conditioned on the other, creating a disconnect between these two branches. A unified framework that learns representation and generates modalities has not been developed yet. In this work, we introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation. The key approach of VAB is that rather than working with raw video frames and audio data, VAB performs representation learning and generative modeling within latent spaces. In particular, VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively. It then performs the pre-training task of visual-conditioned masked audio token prediction. This training strategy enables the model to engage in contextual learning and simultaneous video-to-audio generation. After the pre-training phase, VAB employs the iterative-decoding approach to rapidly generate audio tokens conditioned on visual features. Since VAB is a unified model, its backbone can be fine-tuned for various audio-visual downstream tasks. Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features, leading to competitive results in audio-visual retrieval and classification.
Related papers
- Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
Video and audio content creation serves as the core technique for the movie industry and professional users.
Existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry.
In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation.
arXiv Detail & Related papers (2024-02-27T17:57:04Z) - AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining [46.22290575167155]
This paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation.
Our framework introduces a general representation of audio, called "language of audio" (LOA)
arXiv Detail & Related papers (2023-08-10T17:55:13Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities.
We translate the input audio to visual features, then use a pre-trained generator to produce an image.
We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches.
arXiv Detail & Related papers (2023-03-30T16:01:50Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE)
Our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound.
arXiv Detail & Related papers (2022-10-02T07:29:57Z) - Audio-Visual Segmentation [47.10873917119006]
We propose to explore a new problem called audio-visual segmentation (AVS)
The goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame.
We construct the first audio-visual segmentation benchmark (AVSBench), providing pixel-wise annotations for the sounding objects in audible videos.
arXiv Detail & Related papers (2022-07-11T17:50:36Z) - Joint Learning of Visual-Audio Saliency Prediction and Sound Source
Localization on Multi-face Videos [101.83513408195692]
We propose a multitask learning method for visual-audio saliency prediction and sound source localization on multi-face video.
The proposed method outperforms 12 state-of-the-art saliency prediction methods, and achieves competitive results in sound source localization.
arXiv Detail & Related papers (2021-11-05T14:35:08Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
We introduce a novel self-supervised pretext task for learning representations from audio-visual content.
The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks.
arXiv Detail & Related papers (2020-11-03T16:20:04Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.