Chebyshev Feature Neural Network for Accurate Function Approximation
- URL: http://arxiv.org/abs/2409.19135v1
- Date: Fri, 27 Sep 2024 20:41:17 GMT
- Title: Chebyshev Feature Neural Network for Accurate Function Approximation
- Authors: Zhongshu Xu, Yuan Chen, Dongbin Xiu,
- Abstract summary: We present a new Deep Neural Network architecture capable of approximating functions up to machine accuracy.
Termed Chebyshev Feature Neural Network (CFNN), the new structure employs Chebyshev functions with learnable frequencies as the first hidden layer.
- Score: 3.8769921482808116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new Deep Neural Network (DNN) architecture capable of approximating functions up to machine accuracy. Termed Chebyshev Feature Neural Network (CFNN), the new structure employs Chebyshev functions with learnable frequencies as the first hidden layer, followed by the standard fully connected hidden layers. The learnable frequencies of the Chebyshev layer are initialized with exponential distributions to cover a wide range of frequencies. Combined with a multi-stage training strategy, we demonstrate that this CFNN structure can achieve machine accuracy during training. A comprehensive set of numerical examples for dimensions up to $20$ are provided to demonstrate the effectiveness and scalability of the method.
Related papers
- Tiled Bit Networks: Sub-Bit Neural Network Compression Through Reuse of Learnable Binary Vectors [4.95475852994362]
We propose a new form of quantization to tile neural network layers with sequences of bits to achieve sub-bit compression of binary-weighted neural networks.
We employ the approach to both fully-connected and convolutional layers, which make up the breadth of space in most neural architectures.
arXiv Detail & Related papers (2024-07-16T15:55:38Z) - Lipschitz constant estimation for general neural network architectures using control tools [0.05120567378386613]
This paper is devoted to the estimation of the Lipschitz constant of neural networks using semidefinite programming.
For this purpose, we interpret neural networks as time-varying dynamical systems, where the $k$-th layer corresponds to the dynamics at time $k$.
arXiv Detail & Related papers (2024-05-02T09:38:16Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
We propose a single CNN architecture equipped with continuous convolutional kernels for tasks on arbitrary resolution, dimensionality and length without structural changes.
We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$mathrmD$) and visual data (2$mathrmD$)
Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
arXiv Detail & Related papers (2022-06-07T15:48:02Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Scalable Lipschitz Residual Networks with Convex Potential Flows [120.27516256281359]
We show that using convex potentials in a residual network gradient flow provides a built-in $1$-Lipschitz transformation.
A comprehensive set of experiments on CIFAR-10 demonstrates the scalability of our architecture and the benefit of our approach for $ell$ provable defenses.
arXiv Detail & Related papers (2021-10-25T07:12:53Z) - Neural Network Structure Design based on N-Gauss Activation Function [0.2578242050187029]
We introduce the core block N-Gauss, N-Gauss, and Swish neural network structure design to train MNIST, CIFAR10, and CIFAR100 respectively.
N-Gauss gives full play to the main role of nonlinear modeling of activation functions, so that deep convolutional neural networks have hierarchical nonlinear mapping learning capabilities.
arXiv Detail & Related papers (2021-06-01T11:16:37Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.