Edit-Constrained Decoding for Sentence Simplification
- URL: http://arxiv.org/abs/2409.19247v1
- Date: Sat, 28 Sep 2024 05:39:50 GMT
- Title: Edit-Constrained Decoding for Sentence Simplification
- Authors: Tatsuya Zetsu, Yuki Arase, Tomoyuki Kajiwara,
- Abstract summary: We propose edit operation based lexically constrained decoding for sentence simplification.
Our experiments indicate that the proposed method consistently outperforms the previous studies on three English simplification corpora commonly used in this task.
- Score: 16.795671075667205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose edit operation based lexically constrained decoding for sentence simplification. In sentence simplification, lexical paraphrasing is one of the primary procedures for rewriting complex sentences into simpler correspondences. While previous studies have confirmed the efficacy of lexically constrained decoding on this task, their constraints can be loose and may lead to sub-optimal generation. We address this problem by designing constraints that replicate the edit operations conducted in simplification and defining stricter satisfaction conditions. Our experiments indicate that the proposed method consistently outperforms the previous studies on three English simplification corpora commonly used in this task.
Related papers
- Discourse-Aware Text Simplification: From Complex Sentences to Linked
Propositions [11.335080241393191]
Text Simplification (TS) aims to modify sentences in order to make them easier to process.
We present a discourse-aware TS approach that splits and rephrases complex English sentences.
We generate a semantic hierarchy of minimal propositions that puts a semantic layer on top of the simplified sentences.
arXiv Detail & Related papers (2023-08-01T10:10:59Z) - Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework.
We show that explicitly modeling QUD provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse.
arXiv Detail & Related papers (2023-05-17T17:26:16Z) - Exploiting Summarization Data to Help Text Simplification [50.0624778757462]
We analyzed the similarity between text summarization and text simplification and exploited summarization data to help simplify.
We named these pairs Sum4Simp (S4S) and conducted human evaluations to show that S4S is high-quality.
arXiv Detail & Related papers (2023-02-14T15:32:04Z) - Unsupervised Sentence Simplification via Dependency Parsing [4.337513096197002]
We propose a simple yet novel unsupervised sentence simplification system.
It harnesses parsing structures together with sentence embeddings to produce linguistically effective simplifications.
We establish the unsupervised state-of-the-art at 39.13 SARI on TurkCorpus set and perform competitively against supervised baselines on various quality metrics.
arXiv Detail & Related papers (2022-06-10T07:55:25Z) - GRS: Combining Generation and Revision in Unsupervised Sentence
Simplification [7.129708913903111]
We propose an unsupervised approach to sentence simplification that combines text generation and text revision.
We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation.
This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability.
arXiv Detail & Related papers (2022-03-18T04:52:54Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting.
Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously.
We propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles.
arXiv Detail & Related papers (2020-10-21T13:44:40Z) - Recurrent Inference in Text Editing [6.4689151804633775]
We propose a new inference method, Recurrence, that iteratively performs editing actions, significantly narrowing the problem space.
In each iteration, encoding the partially edited text, Recurrence decodes the latent representation, generates an action of short, fixed-length, and applies the action to complete a single edit.
For a comprehensive comparison, we introduce three types of text editing tasks: Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), Arithmetic Equation Correction (AEC)
arXiv Detail & Related papers (2020-09-26T17:06:29Z) - Explainable Prediction of Text Complexity: The Missing Preliminaries for
Text Simplification [13.447565774887215]
Text simplification reduces the language complexity of professional content for accessibility purposes.
End-to-end neural network models have been widely adopted to directly generate the simplified version of input text.
We show that text simplification can be decomposed into a compact pipeline of tasks to ensure the transparency and explainability of the process.
arXiv Detail & Related papers (2020-07-31T03:33:37Z) - Neural Syntactic Preordering for Controlled Paraphrase Generation [57.5316011554622]
Our work uses syntactic transformations to softly "reorder'' the source sentence and guide our neural paraphrasing model.
First, given an input sentence, we derive a set of feasible syntactic rearrangements using an encoder-decoder model.
Next, we use each proposed rearrangement to produce a sequence of position embeddings, which encourages our final encoder-decoder paraphrase model to attend to the source words in a particular order.
arXiv Detail & Related papers (2020-05-05T09:02:25Z) - ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification
Models with Multiple Rewriting Transformations [97.27005783856285]
This paper introduces ASSET, a new dataset for assessing sentence simplification in English.
We show that simplifications in ASSET are better at capturing characteristics of simplicity when compared to other standard evaluation datasets for the task.
arXiv Detail & Related papers (2020-05-01T16:44:54Z) - Fact-aware Sentence Split and Rephrase with Permutation Invariant
Training [93.66323661321113]
Sentence Split and Rephrase aims to break down a complex sentence into several simple sentences with its meaning preserved.
Previous studies tend to address the issue by seq2seq learning from parallel sentence pairs.
We introduce Permutation Training to verifies the effects of order variance in seq2seq learning for this task.
arXiv Detail & Related papers (2020-01-16T07:30:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.