3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models
- URL: http://arxiv.org/abs/2409.19330v1
- Date: Sat, 28 Sep 2024 12:31:07 GMT
- Title: 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models
- Authors: Hao Chen, Wei Zhao, Yingli Li, Tianyang Zhong, Yisong Wang, Youlan Shang, Lei Guo, Junwei Han, Tianming Liu, Jun Liu, Tuo Zhang,
- Abstract summary: This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
- Score: 51.855377054763345
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Medical image analysis is crucial in modern radiological diagnostics, especially given the exponential growth in medical imaging data. The demand for automated report generation systems has become increasingly urgent. While prior research has mainly focused on using machine learning and multimodal language models for 2D medical images, the generation of reports for 3D medical images has been less explored due to data scarcity and computational complexities. This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model specifically designed for generating radiology reports from 3D CT scans, particularly chest CTs. Extensive experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality. Although current methods are few, including the partially open-source CT2Rep and the open-source M3D, we ensured fair comparison through appropriate data conversion and evaluation methodologies. Experimental results indicate that 3D-CT-GPT enhances diagnostic accuracy and report coherence, establishing itself as a robust solution for clinical radiology report generation. Future work will focus on expanding the dataset and further optimizing the model to enhance its performance and applicability.
Related papers
- E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model [23.56751925900571]
The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment.
We utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features.
We apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity.
Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis.
arXiv Detail & Related papers (2024-10-18T06:31:40Z) - Benchmarking and Boosting Radiology Report Generation for 3D High-Resolution Medical Images [15.897686345011731]
We introduce a novel framework that efficiently generates radiology reports for high-resolution (HR) 3D volumes, based on large language models (LLMs)
Specifically, our framework utilizes low-resolution (LR) visual tokens as queries to mine information from HR tokens, preserving detailed HR information while reducing computational costs.
We curate and release BIMCV-RG, a new dataset with 5,328 HR 3D volumes and paired reports, establishing the first benchmarks for report generation from 3D HR medical images.
arXiv Detail & Related papers (2024-06-11T10:45:59Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
We introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning.
Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages.
arXiv Detail & Related papers (2024-04-23T17:59:01Z) - Developing Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography [1.8424705673580284]
We introduce CT-RATE, the first dataset that pairs 3D medical images with corresponding textual reports.
We develop CT-CLIP, a CT-focused contrastive language-image pretraining framework.
We create CT-CHAT, a vision-language foundational chat model for 3D chest CT volumes.
arXiv Detail & Related papers (2024-03-26T16:19:56Z) - CT2Rep: Automated Radiology Report Generation for 3D Medical Imaging [0.20754235913398283]
We introduce the first method to generate radiology reports for 3D medical imaging, specifically targeting chest CT.
Given the absence of comparable methods, we establish a baseline using an advanced 3D vision encoder in medical imaging to demonstrate our method's effectiveness.
We augment CT2Rep with a cross-attention-based multi-modal fusion module and hierarchical memory, enabling the incorporation of longitudinal multimodal data.
arXiv Detail & Related papers (2024-03-11T15:17:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.