Steering Prediction via a Multi-Sensor System for Autonomous Racing
- URL: http://arxiv.org/abs/2409.19356v1
- Date: Sat, 28 Sep 2024 13:58:24 GMT
- Title: Steering Prediction via a Multi-Sensor System for Autonomous Racing
- Authors: Zhuyun Zhou, Zongwei Wu, Florian Bolli, RĂ©mi Boutteau, Fan Yang, Radu Timofte, Dominique Ginhac, Tobi Delbruck,
- Abstract summary: Traditionally, racing cars rely on 2D LiDAR as their primary visual system.
In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information.
Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing.
- Score: 45.70482345703285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing. To the best of our knowledge, this is the first study addressing this challenging research topic. We start by creating a multisensor dataset specifically for steering prediction. Using this dataset, we establish a benchmark by evaluating various SOTA fusion methods. Our observations reveal that existing methods often incur substantial computational costs. To address this, we apply low-rank techniques to propose a novel, efficient, and effective fusion design. We introduce a new fusion learning policy to guide the fusion process, enhancing robustness against misalignment. Our fusion architecture provides better steering prediction than LiDAR alone, significantly reducing the RMSE from 7.72 to 1.28. Compared to the second-best fusion method, our work represents only 11% of the learnable parameters while achieving better accuracy. The source code, dataset, and benchmark will be released to promote future research.
Related papers
- Enhancing Lane Segment Perception and Topology Reasoning with Crowdsourcing Trajectory Priors [12.333249510969289]
In this paper, we investigate prior augmentation from a novel perspective of trajectory priors.
We design a confidence-based fusion module that takes alignment into account during the fusion process.
The results indicate that our method's performance significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2024-11-26T07:05:05Z) - FusionAD: Multi-modality Fusion for Prediction and Planning Tasks of
Autonomous Driving [20.037562671813]
We present FusionAD, the first unified framework that fuse the information from most critical sensors, camera and LiDAR, goes beyond perception task.
In constrast to camera-based end-to-end UniAD, we establish a method fusion aided modality-aware prediction status planning modules, dubbed FMS.
We conduct extensive experiments on commonly used benchmark nu's dataset, our advantages state-of-the-art performance and surpassing baselines on average 15% on perception tasks like detection and tracking, 10% on occupancy prediction accuracy, reducing prediction error from 0.708 to 0.389, and reducing collision rate from 0.31%
arXiv Detail & Related papers (2023-08-02T08:29:44Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Stress-Testing LiDAR Registration [52.24383388306149]
We propose a method for selecting balanced registration sets, which are challenging sets of frame-pairs from LiDAR datasets.
Perhaps unexpectedly, we find that the fastest and simultaneously most accurate approach is a version of advanced RANSAC.
arXiv Detail & Related papers (2022-04-16T05:10:55Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.