Identifiable Shared Component Analysis of Unpaired Multimodal Mixtures
- URL: http://arxiv.org/abs/2409.19422v2
- Date: Tue, 1 Oct 2024 07:04:04 GMT
- Title: Identifiable Shared Component Analysis of Unpaired Multimodal Mixtures
- Authors: Subash Timilsina, Sagar Shrestha, Xiao Fu,
- Abstract summary: A core task in multi-modal learning is to integrate information from multiple feature spaces (e.g., text and audio), offering modality-invariant essential representations of data.
Recent research showed that, classical tools such as it canonical correlation analysis (CCA) provably identify the shared components up to minor ambiguities.
This work takes a step further, investigating shared component identifiability from multi-modal linear mixtures where cross-modality samples are unaligned.
- Score: 10.563519176608667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A core task in multi-modal learning is to integrate information from multiple feature spaces (e.g., text and audio), offering modality-invariant essential representations of data. Recent research showed that, classical tools such as {\it canonical correlation analysis} (CCA) provably identify the shared components up to minor ambiguities, when samples in each modality are generated from a linear mixture of shared and private components. Such identifiability results were obtained under the condition that the cross-modality samples are aligned/paired according to their shared information. This work takes a step further, investigating shared component identifiability from multi-modal linear mixtures where cross-modality samples are unaligned. A distribution divergence minimization-based loss is proposed, under which a suite of sufficient conditions ensuring identifiability of the shared components are derived. Our conditions are based on cross-modality distribution discrepancy characterization and density-preserving transform removal, which are much milder than existing studies relying on independent component analysis. More relaxed conditions are also provided via adding reasonable structural constraints, motivated by available side information in various applications. The identifiability claims are thoroughly validated using synthetic and real-world data.
Related papers
- Bayesian Joint Additive Factor Models for Multiview Learning [7.254731344123118]
A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes.
We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components.
Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors.
arXiv Detail & Related papers (2024-06-02T15:35:45Z) - Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities [16.69453837626083]
We propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the Multimodal Sentiment Analysis (MSA) task under uncertain missing modalities.
We present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics.
We design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network.
arXiv Detail & Related papers (2024-04-25T09:35:09Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Disentangling Mixtures of Unknown Causal Interventions [3.214838781410822]
We study the problem of identifying all components present in a mixture of interventions on a given causal Bayesian Network.
Our proof gives an efficient algorithm to recover these targets from the exponentially large search space of possible targets.
arXiv Detail & Related papers (2022-10-01T08:08:18Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Shared Independent Component Analysis for Multi-Subject Neuroimaging [107.29179765643042]
We introduce Shared Independent Component Analysis (ShICA) that models each view as a linear transform of shared independent components contaminated by additive Gaussian noise.
We show that this model is identifiable if the components are either non-Gaussian or have enough diversity in noise variances.
We provide empirical evidence on fMRI and MEG datasets that ShICA yields more accurate estimation of the components than alternatives.
arXiv Detail & Related papers (2021-10-26T08:54:41Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.