Quantitative Analysis of Audio-Visual Tasks: An Information-Theoretic Perspective
- URL: http://arxiv.org/abs/2409.19575v1
- Date: Sun, 29 Sep 2024 06:30:46 GMT
- Title: Quantitative Analysis of Audio-Visual Tasks: An Information-Theoretic Perspective
- Authors: Chen Chen, Xiaolou Li, Zehua Liu, Lantian Li, Dong Wang,
- Abstract summary: This paper presents a quantitative analysis based on information theory, focusing on information intersection between different modalities.
Our results show that this analysis is valuable for understanding the difficulties of audio-visual processing tasks as well as the benefits that could be obtained by modality integration.
- Score: 12.178918299455898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of spoken language processing, audio-visual speech processing is receiving increasing research attention. Key components of this research include tasks such as lip reading, audio-visual speech recognition, and visual-to-speech synthesis. Although significant success has been achieved, theoretical analysis is still insufficient for audio-visual tasks. This paper presents a quantitative analysis based on information theory, focusing on information intersection between different modalities. Our results show that this analysis is valuable for understanding the difficulties of audio-visual processing tasks as well as the benefits that could be obtained by modality integration.
Related papers
- Meta-Learning in Audio and Speech Processing: An End to End Comprehensive Review [0.0]
We present a systematic review of meta-learning methodologies in audio processing.
This includes audio-specific discussions on data augmentation, feature extraction, preprocessing techniques, meta-learners, task selection strategies.
We aim to provide valuable insights and identify future research directions in the intersection of meta-learning and audio processing.
arXiv Detail & Related papers (2024-08-19T18:11:59Z) - Analysis of Visual Features for Continuous Lipreading in Spanish [0.0]
lipreading is a complex task whose objective is to interpret speech when audio is not available.
We propose an analysis of different speech visual features with the intention of identifying which of them is the best approach to capture the nature of lip movements for natural Spanish.
arXiv Detail & Related papers (2023-11-21T09:28:00Z) - Towards Disentangled Speech Representations [65.7834494783044]
We construct a representation learning task based on joint modeling of ASR and TTS.
We seek to learn a representation of audio that disentangles that part of the speech signal that is relevant to transcription from that part which is not.
We show that enforcing these properties during training improves WER by 24.5% relative on average for our joint modeling task.
arXiv Detail & Related papers (2022-08-28T10:03:55Z) - Learning in Audio-visual Context: A Review, Analysis, and New
Perspective [88.40519011197144]
This survey aims to systematically organize and analyze studies of the audio-visual field.
We introduce several key findings that have inspired our computational studies.
We propose a new perspective on audio-visual scene understanding, then discuss and analyze the feasible future direction of the audio-visual learning area.
arXiv Detail & Related papers (2022-08-20T02:15:44Z) - E-ffective: A Visual Analytic System for Exploring the Emotion and
Effectiveness of Inspirational Speeches [57.279044079196105]
E-ffective is a visual analytic system allowing speaking experts and novices to analyze both the role of speech factors and their contribution in effective speeches.
Two novel visualizations include E-spiral (that shows the emotional shifts in speeches in a visually compact way) and E-script (that connects speech content with key speech delivery information.
arXiv Detail & Related papers (2021-10-28T06:14:27Z) - An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and
Separation [57.68765353264689]
Speech enhancement and speech separation are two related tasks.
Traditionally, these tasks have been tackled using signal processing and machine learning techniques.
Deep learning has been exploited to achieve strong performance.
arXiv Detail & Related papers (2020-08-21T17:24:09Z) - Deep Audio-Visual Learning: A Survey [53.487938108404244]
We divide the current audio-visual learning tasks into four different subfields.
We discuss state-of-the-art methods as well as the remaining challenges of each subfield.
We summarize the commonly used datasets and performance metrics.
arXiv Detail & Related papers (2020-01-14T13:11:21Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.