RNG: Relightable Neural Gaussians
- URL: http://arxiv.org/abs/2409.19702v3
- Date: Thu, 24 Oct 2024 08:17:05 GMT
- Title: RNG: Relightable Neural Gaussians
- Authors: Jiahui Fan, Fujun Luan, Jian Yang, Miloš Hašan, Beibei Wang,
- Abstract summary: RNG is a novel representation of relightable Gaussians.
We propose a depth refinement network to help the shadow under neural 3DGS framework.
We achieve about $20times$ faster in training and about $600times$ faster in rendering than prior work.
- Score: 19.197099019727826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has shown its impressive power in novel view synthesis. However, creating relightable 3D assets, especially for objects with ill-defined shapes (e.g., fur), is still a challenging task. For these scenes, the decomposition between the light, geometry, and material is more ambiguous, as neither the surface constraints nor the analytical shading model hold. To address this issue, we propose RNG, a novel representation of relightable neural Gaussians, enabling the relighting of objects with both hard surfaces or fluffy boundaries. We avoid any assumptions in the shading model but maintain feature vectors, which can be further decoded by an MLP into colors, in each Gaussian point. Following prior work, we utilize a point light to reduce the ambiguity and introduce a shadow-aware condition to the network. We additionally propose a depth refinement network to help the shadow computation under the 3DGS framework, leading to better shadow effects under point lights. Furthermore, to avoid the blurriness brought by the alpha-blending in 3DGS, we design a hybrid forward-deferred optimization strategy. As a result, we achieve about $20\times$ faster in training and about $600\times$ faster in rendering than prior work based on neural radiance fields, with $60$ frames per second on an RTX4090.
Related papers
- GlossGau: Efficient Inverse Rendering for Glossy Surface with Anisotropic Spherical Gaussian [4.5442067197725]
GlossGau is an efficient inverse rendering framework that reconstructs scenes with glossy surfaces while maintaining training and rendering speeds comparable to vanilla 3D-GS.
Experiments demonstrate that GlossGau achieves competitive or superior reconstruction on datasets with glossy surfaces.
arXiv Detail & Related papers (2025-02-19T22:20:57Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - Subsurface Scattering for 3D Gaussian Splatting [10.990813043493642]
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface.
We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data.
Our approach enables material editing, relighting and novel view synthesis at interactive rates.
arXiv Detail & Related papers (2024-08-22T10:34:01Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.