Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement
- URL: http://arxiv.org/abs/2409.19732v1
- Date: Sun, 29 Sep 2024 15:17:33 GMT
- Title: Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement
- Authors: Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, Xiaolin Huang,
- Abstract summary: Machine unlearning (MU) has emerged to enhance the privacy and trustworthiness of deep neural networks.
Approximate MU is a practical method for large-scale models.
We propose a fast-slow parameter update strategy to implicitly approximate the up-to-date salient unlearning direction.
- Score: 29.675650285351768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning (MU) has emerged to enhance the privacy and trustworthiness of deep neural networks. Approximate MU is a practical method for large-scale models. Our investigation into approximate MU starts with identifying the steepest descent direction, minimizing the output Kullback-Leibler divergence to exact MU inside a parameters' neighborhood. This probed direction decomposes into three components: weighted forgetting gradient ascent, fine-tuning retaining gradient descent, and a weight saliency matrix. Such decomposition derived from Euclidean metric encompasses most existing gradient-based MU methods. Nevertheless, adhering to Euclidean space may result in sub-optimal iterative trajectories due to the overlooked geometric structure of the output probability space. We suggest embedding the unlearning update into a manifold rendered by the remaining geometry, incorporating second-order Hessian from the remaining data. It helps prevent effective unlearning from interfering with the retained performance. However, computing the second-order Hessian for large-scale models is intractable. To efficiently leverage the benefits of Hessian modulation, we propose a fast-slow parameter update strategy to implicitly approximate the up-to-date salient unlearning direction. Free from specific modal constraints, our approach is adaptable across computer vision unlearning tasks, including classification and generation. Extensive experiments validate our efficacy and efficiency. Notably, our method successfully performs class-forgetting on ImageNet using DiT and forgets a class on CIFAR-10 using DDPM in just 50 steps, compared to thousands of steps required by previous methods.
Related papers
- Massive Dimensions Reduction and Hybridization with Meta-heuristics in Deep Learning [0.24578723416255746]
Histogram-based Differential Evolution (HBDE) hybridizes gradient-based and gradient-free algorithms to optimize parameters.
HBDE outperforms baseline gradient-based and parent gradient-free DE algorithms evaluated on CIFAR-10 and CIFAR-100 datasets.
arXiv Detail & Related papers (2024-08-13T20:28:20Z) - Class Gradient Projection For Continual Learning [99.105266615448]
Catastrophic forgetting is one of the most critical challenges in Continual Learning (CL)
We propose Class Gradient Projection (CGP), which calculates the gradient subspace from individual classes rather than tasks.
arXiv Detail & Related papers (2023-11-25T02:45:56Z) - ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Tom: Leveraging trend of the observed gradients for faster convergence [0.0]
Tom is a novel variant of Adam that takes into account the trend observed for the gradients in the landscape in the loss traversed by the neural network.
Tom outperforms Adagrad, Adadelta, RMSProp and Adam in terms of both accuracy and has a faster convergence.
arXiv Detail & Related papers (2021-09-07T20:19:40Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks.
The training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix.
We propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer.
arXiv Detail & Related papers (2021-06-01T15:07:34Z) - Randomized Automatic Differentiation [22.95414996614006]
We develop a general framework and approach for randomized automatic differentiation (RAD)
RAD can allow unbiased estimates to be computed with reduced memory in return for variance.
We show that RAD converges in fewer iterations than using a small batch size for feedforward networks, and in a similar number for recurrent networks.
arXiv Detail & Related papers (2020-07-20T19:03:44Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.