Tracking Everything in Robotic-Assisted Surgery
- URL: http://arxiv.org/abs/2409.19821v1
- Date: Sun, 29 Sep 2024 23:06:57 GMT
- Title: Tracking Everything in Robotic-Assisted Surgery
- Authors: Bohan Zhan, Wang Zhao, Yi Fang, Bo Du, Francisco Vasconcelos, Danail Stoyanov, Daniel S. Elson, Baoru Huang,
- Abstract summary: We present an annotated surgical tracking dataset for benchmarking tracking methods for surgical scenarios.
We evaluate state-of-the-art (SOTA) TAP-based algorithms on this dataset and reveal their limitations in challenging surgical scenarios.
We propose a new tracking method, namely SurgMotion, to solve the challenges and further improve the tracking performance.
- Score: 39.62251870446397
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate tracking of tissues and instruments in videos is crucial for Robotic-Assisted Minimally Invasive Surgery (RAMIS), as it enables the robot to comprehend the surgical scene with precise locations and interactions of tissues and tools. Traditional keypoint-based sparse tracking is limited by featured points, while flow-based dense two-view matching suffers from long-term drifts. Recently, the Tracking Any Point (TAP) algorithm was proposed to overcome these limitations and achieve dense accurate long-term tracking. However, its efficacy in surgical scenarios remains untested, largely due to the lack of a comprehensive surgical tracking dataset for evaluation. To address this gap, we introduce a new annotated surgical tracking dataset for benchmarking tracking methods for surgical scenarios, comprising real-world surgical videos with complex tissue and instrument motions. We extensively evaluate state-of-the-art (SOTA) TAP-based algorithms on this dataset and reveal their limitations in challenging surgical scenarios, including fast instrument motion, severe occlusions, and motion blur, etc. Furthermore, we propose a new tracking method, namely SurgMotion, to solve the challenges and further improve the tracking performance. Our proposed method outperforms most TAP-based algorithms in surgical instruments tracking, and especially demonstrates significant improvements over baselines in challenging medical videos.
Related papers
- Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
Improved surgical skill is generally associated with improved patient outcomes, but assessment is subjective and labour-intensive.
A new public dataset is introduced, focusing on simulated surgery, using the nasal phase of endoscopic pituitary surgery as an exemplar.
A Multilayer Perceptron achieved 87% accuracy in predicting surgical skill level (novice or expert), with the "ratio of total procedure time to instrument visible time" correlated with higher surgical skill.
arXiv Detail & Related papers (2024-09-25T15:27:44Z) - OSSAR: Towards Open-Set Surgical Activity Recognition in Robot-assisted
Surgery [13.843251369739908]
We introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework.
Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space.
To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset.
arXiv Detail & Related papers (2024-02-10T16:23:12Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - A comprehensive survey on recent deep learning-based methods applied to
surgical data [2.1506382989223782]
Real-time systems can help surgeons to navigate and track tools, by providing clear understanding of scene and avoid miscalculations during operation.
Recent machine learning-based approaches including surgical tool localisation, segmentation, tracking and 3D scene perception.
We present current gaps and directions of these invented methods and provide rational behind clinical integration of these approaches.
arXiv Detail & Related papers (2022-09-03T14:25:39Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Occlusion-robust Visual Markerless Bone Tracking for Computer-Assisted
Orthopaedic Surgery [41.681134859412246]
We propose a RGB-D sensing-based markerless tracking method that is robust against occlusion.
By using a high-quality commercial RGB-D camera, our proposed visual tracking method achieves an accuracy of 1-2 degress and 2-4 mm on a model knee.
arXiv Detail & Related papers (2021-08-24T09:49:08Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z) - SuPer Deep: A Surgical Perception Framework for Robotic Tissue
Manipulation using Deep Learning for Feature Extraction [25.865648975312407]
We exploit deep learning methods for surgical perception.
We integrated deep neural networks, capable of efficient feature extraction, into the tissue reconstruction and instrument pose estimation processes.
Our framework achieves state-of-the-art tracking performance in a surgical environment by utilizing deep learning for feature extraction.
arXiv Detail & Related papers (2020-03-07T00:08:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.