Knowledge Graph Embedding by Normalizing Flows
- URL: http://arxiv.org/abs/2409.19977v1
- Date: Mon, 30 Sep 2024 06:04:34 GMT
- Title: Knowledge Graph Embedding by Normalizing Flows
- Authors: Changyi Xiao, Xiangnan He, Yixin Cao,
- Abstract summary: Key to knowledge graph embedding (KGE) is to choose a proper representation space, e.g., point-wise Euclidean space and complex vector space.
We propose a unified perspective of embedding and introduce uncertainty into KGE from the view of group theory.
- Score: 26.732799849307316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key to knowledge graph embedding (KGE) is to choose a proper representation space, e.g., point-wise Euclidean space and complex vector space. In this paper, we propose a unified perspective of embedding and introduce uncertainty into KGE from the view of group theory. Our model can incorporate existing models (i.e., generality), ensure the computation is tractable (i.e., efficiency) and enjoy the expressive power of complex random variables (i.e., expressiveness). The core idea is that we embed entities/relations as elements of a symmetric group, i.e., permutations of a set. Permutations of different sets can reflect different properties of embedding. And the group operation of symmetric groups is easy to compute. In specific, we show that the embedding of many existing models, point vectors, can be seen as elements of a symmetric group. To reflect uncertainty, we first embed entities/relations as permutations of a set of random variables. A permutation can transform a simple random variable into a complex random variable for greater expressiveness, called a normalizing flow. We then define scoring functions by measuring the similarity of two normalizing flows, namely NFE. We construct several instantiating models and prove that they are able to learn logical rules. Experimental results demonstrate the effectiveness of introducing uncertainty and our model. The code is available at https://github.com/changyi7231/NFE.
Related papers
- A Galois theorem for machine learning: Functions on symmetric matrices and point clouds via lightweight invariant features [26.619014249559942]
We present a mathematical formulation for machine learning of functions on symmetric matrices and point clouds.
We provide a general construction of generically separating invariant features using ideas inspired by Galois theory.
We prove that the number of invariant features can be reduced, generically without losing expressivity, to $O(n)$, where $n$ is the number of points.
arXiv Detail & Related papers (2024-05-13T18:24:03Z) - Data-driven path collective variables [0.0]
We propose a new method for the generation, optimization, and comparison of collective variables.
The resulting collective variable is one-dimensional, interpretable, and differentiable.
We demonstrate the validity of the method on two different applications.
arXiv Detail & Related papers (2023-12-21T14:07:47Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups [1.8434042562191815]
We investigate the subvariety of functions that are equivariant or invariant under the action of a permutation group.
We draw conclusions for the parameterization and the design of equivariant and invariant linear networks.
arXiv Detail & Related papers (2023-09-24T19:40:15Z) - Sampled Transformer for Point Sets [80.66097006145999]
sparse transformer can reduce the computational complexity of the self-attention layers to $O(n)$, whilst still being a universal approximator of continuous sequence-to-sequence functions.
We propose an $O(n)$ complexity sampled transformer that can process point set elements directly without any additional inductive bias.
arXiv Detail & Related papers (2023-02-28T06:38:05Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Top-N: Equivariant set and graph generation without exchangeability [61.24699600833916]
We consider one-shot probabilistic decoders that map a vector-shaped prior to a distribution over sets or graphs.
These functions can be integrated into variational autoencoders (VAE), generative adversarial networks (GAN) or normalizing flows.
Top-n is a deterministic, non-exchangeable set creation mechanism which learns to select the most relevant points from a trainable reference set.
arXiv Detail & Related papers (2021-10-05T14:51:19Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Commutative Lie Group VAE for Disentanglement Learning [96.32813624341833]
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data.
A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning.
Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
arXiv Detail & Related papers (2021-06-07T07:03:14Z) - The general theory of permutation equivarant neural networks and higher
order graph variational encoders [6.117371161379209]
We derive formulae for general permutation equivariant layers, including the case where the layer acts on matrices by permuting their rows and columns simultaneously.
This case arises naturally in graph learning and relation learning applications.
We present a second order graph variational encoder, and show that the latent distribution of equivariant generative models must be exchangeable.
arXiv Detail & Related papers (2020-04-08T13:29:56Z) - Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies [60.285091454321055]
We design a simple and efficient embedding algorithm that learns a small set of anchor embeddings and a sparse transformation matrix.
On text classification, language modeling, and movie recommendation benchmarks, we show that ANT is particularly suitable for large vocabulary sizes.
arXiv Detail & Related papers (2020-03-18T13:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.