Assessing interaction recovery of predicted protein-ligand poses
- URL: http://arxiv.org/abs/2409.20227v1
- Date: Mon, 30 Sep 2024 12:06:13 GMT
- Title: Assessing interaction recovery of predicted protein-ligand poses
- Authors: David Errington, Constantin Schneider, Cédric Bouysset, Frédéric A. Dreyer,
- Abstract summary: We show that ignoring protein-ligand interaction fingerprints can lead to overestimation of model performance.
In this work, we demonstrate that ignoring protein-ligand interaction fingerprints can lead to overestimation of model performance.
- Score: 0.39331876802505306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of protein-ligand pose prediction has seen significant advances in recent years, with machine learning-based methods now being commonly used in lieu of classical docking methods or even to predict all-atom protein-ligand complex structures. Most contemporary studies focus on the accuracy and physical plausibility of ligand placement to determine pose quality, often neglecting a direct assessment of the interactions observed with the protein. In this work, we demonstrate that ignoring protein-ligand interaction fingerprints can lead to overestimation of model performance, most notably in recent protein-ligand cofolding models which often fail to recapitulate key interactions.
Related papers
- Training on test proteins improves fitness, structure, and function prediction [18.176929152066872]
Self-supervised pre-training on large datasets is a common method to enhance generalization.
We introduce a method for self-supervised fine-tuning at test time, allowing models to adapt to the test protein of interest on the fly.
We show that our method leads to new state-of-the-art results on the standard benchmark for protein fitness prediction.
arXiv Detail & Related papers (2024-11-04T14:23:59Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
Compound-Protein Interaction prediction aims to predict the pattern and strength of compound-protein interactions for rational drug discovery.
Existing deep learning-based methods utilize only the single modality of protein sequences or structures.
We propose a novel multi-scale Protein Sequence-structure Contrasting framework for CPI prediction.
arXiv Detail & Related papers (2024-02-13T03:51:10Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Protein-ligand binding representation learning from fine-grained
interactions [29.965890962846093]
We propose to learn protein-ligand binding representation in a self-supervised learning manner.
This self-supervised learning problem is formulated as a prediction of the conclusive binding complex structure.
Experiments have demonstrated the superiority of our method across various binding tasks.
arXiv Detail & Related papers (2023-11-09T01:33:09Z) - Improved K-mer Based Prediction of Protein-Protein Interactions With
Chaos Game Representation, Deep Learning and Reduced Representation Bias [0.0]
We present a method for extracting unique pairs from an interaction dataset, generating non-redundant paired data for unbiased machine learning.
We develop a convolutional neural network model capable of learning and predicting interactions from Chaos Game Representations of proteins' coding genes.
arXiv Detail & Related papers (2023-10-23T10:02:23Z) - Growing ecosystem of deep learning methods for modeling
protein$\unicode{x2013}$protein interactions [0.0]
We discuss the growing ecosystem of deep learning methods for modeling protein interactions.
Opportunities abound to discover novel interactions, modulate their physical mechanisms, and engineer binders to unravel their functions.
arXiv Detail & Related papers (2023-10-10T15:53:27Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Unknown from Correlations: Graph Neural Network for
Inter-novel-protein Interaction Prediction [7.860159889216291]
Existing methods suffer from significant performance degradation when tested in unseen dataset.
We propose a graph neural network based method (GNN-PPI) for better inter-novel-protein interaction prediction.
arXiv Detail & Related papers (2021-05-14T08:42:55Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.