Word-wise intonation model for cross-language TTS systems
- URL: http://arxiv.org/abs/2409.20374v1
- Date: Mon, 30 Sep 2024 15:09:42 GMT
- Title: Word-wise intonation model for cross-language TTS systems
- Authors: Tomilov A. A., Gromova A. Y., Svischev A. N,
- Abstract summary: The proposed model is suitable for automatic data markup and its extended application to text-to-speech systems.
The key idea is a partial elimination of the variability connected with different placements of a stressed syllable in a word.
The proposed model could be used as a tool for intonation research or as a backbone for prosody description in text-to-speech systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we propose a word-wise intonation model for Russian language and show how it can be generalized for other languages. The proposed model is suitable for automatic data markup and its extended application to text-to-speech systems. It can also be implemented for an intonation contour modeling by using rule-based algorithms or by predicting contours with language models. The key idea is a partial elimination of the variability connected with different placements of a stressed syllable in a word. It is achieved with simultaneous applying of pitch simplification with a dynamic time warping clustering. The proposed model could be used as a tool for intonation research or as a backbone for prosody description in text-to-speech systems. As the advantage of the model, we show its relations with the existing intonation systems as well as the possibility of using language models for prosody prediction. Finally, we demonstrate some practical evidence of the system robustness to parameter variations.
Related papers
- Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - An investigation of speaker independent phrase break models in
End-to-End TTS systems [0.0]
We evaluate the utility and effectiveness of phrase break prediction models in an end-to-end TTS system.
We show by means of perceptual listening evaluations that there is a clear preference for stories synthesized after predicting the location of phrase breaks.
arXiv Detail & Related papers (2023-04-09T04:26:58Z) - Augmentation Invariant Discrete Representation for Generative Spoken
Language Modeling [41.733860809136196]
We propose an effective and efficient method to learn robust discrete speech representation for generative spoken language modeling.
The proposed approach is based on applying a set of signal transformations to the speech signal and optimizing the model using an iterative pseudo-labeling scheme.
We additionally evaluate our method on the speech-to-speech translation task, considering Spanish-English and French-English translations, and show the proposed approach outperforms the evaluated baselines.
arXiv Detail & Related papers (2022-09-30T14:15:03Z) - Language Model Cascades [72.18809575261498]
Repeated interactions at test-time with a single model, or the composition of multiple models together, further expands capabilities.
Cases with control flow and dynamic structure require techniques from probabilistic programming.
We formalize several existing techniques from this perspective, including scratchpads / chain of thought, verifiers, STaR, selection-inference, and tool use.
arXiv Detail & Related papers (2022-07-21T07:35:18Z) - Speech Summarization using Restricted Self-Attention [79.89680891246827]
We introduce a single model optimized end-to-end for speech summarization.
We demonstrate that the proposed model learns to directly summarize speech for the How-2 corpus of instructional videos.
arXiv Detail & Related papers (2021-10-12T18:21:23Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
We propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction.
It is expected that this factorization can transfer the improvement of the standalone language model to the Transducer for speech recognition.
We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for language model adaptation.
arXiv Detail & Related papers (2021-09-27T15:04:00Z) - Deep Learning Based Assessment of Synthetic Speech Naturalness [14.463987018380468]
We present a new objective prediction model for synthetic speech naturalness.
It can be used to evaluate Text-To-Speech or Voice Conversion systems.
arXiv Detail & Related papers (2021-04-23T16:05:20Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - DiscreTalk: Text-to-Speech as a Machine Translation Problem [52.33785857500754]
This paper proposes a new end-to-end text-to-speech (E2E-TTS) model based on neural machine translation (NMT)
The proposed model consists of two components; a non-autoregressive vector quantized variational autoencoder (VQ-VAE) model and an autoregressive Transformer-NMT model.
arXiv Detail & Related papers (2020-05-12T02:45:09Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
One popular method for determining a model's ability to induce syntactic structure trains a model on strings generated according to a template then tests the model's ability to distinguish such strings from superficially similar ones with different syntax.
We illustrate a fundamental problem with this approach by reproducing positive results from a recent paper with two non-syntactic baseline language models.
arXiv Detail & Related papers (2020-04-10T15:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.