AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
- URL: http://arxiv.org/abs/2409.20398v2
- Date: Thu, 10 Oct 2024 13:31:39 GMT
- Title: AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
- Authors: Boyu Han, Qianqian Xu, Zhiyong Yang, Shilong Bao, Peisong Wen, Yangbangyan Jiang, Qingming Huang,
- Abstract summary: We develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability.
We also design a Tail-Classes Memory Bank to manage the significant memory demand.
- Score: 88.50256898176269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performance under long-tail distributions. In this paper, we explore AUC optimization methods in the context of pixel-level long-tail semantic segmentation, a much more complicated scenario. This task introduces two major challenges for AUC optimization techniques. On one hand, AUC optimization in a pixel-level task involves complex coupling across loss terms, with structured inner-image and pairwise inter-image dependencies, complicating theoretical analysis. On the other hand, we find that mini-batch estimation of AUC loss in this case requires a larger batch size, resulting in an unaffordable space complexity. To address these issues, we develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability. Additionally, we design a Tail-Classes Memory Bank (T-Memory Bank) to manage the significant memory demand. Finally, comprehensive experiments across various benchmarks confirm the effectiveness of our proposed AUCSeg method. The code is available at https://github.com/boyuh/AUCSeg.
Related papers
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - DRAUC: An Instance-wise Distributionally Robust AUC Optimization
Framework [133.26230331320963]
Area Under the ROC Curve (AUC) is a widely employed metric in long-tailed classification scenarios.
We propose an instance-wise surrogate loss of Distributionally Robust AUC (DRAUC) and build our optimization framework on top of it.
arXiv Detail & Related papers (2023-11-06T12:15:57Z) - Supervised Contrastive Learning as Multi-Objective Optimization for
Fine-Tuning Large Pre-trained Language Models [3.759936323189417]
Supervised Contrastive Learning (SCL) has been shown to achieve excellent performance in most classification tasks.
In this work, we formulate the SCL problem as a Multi-Objective Optimization problem for the fine-tuning phase of RoBERTa language model.
arXiv Detail & Related papers (2022-09-28T15:13:58Z) - AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail
Problems [102.95119281306893]
We present an early trial to explore adversarial training methods to optimize AUC.
We reformulate the AUC optimization problem as a saddle point problem, where the objective becomes an instance-wise function.
Our analysis differs from the existing studies since the algorithm is asked to generate adversarial examples by calculating the gradient of a min-max problem.
arXiv Detail & Related papers (2022-06-24T09:13:39Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - Evolutionary Multitasking AUC Optimization [10.279426529746667]
This paper develops an evolutionary (termed EMT) to make full use of information among the constructed cheap and expensive tasks to obtain higher performance.
The performance of the proposed method is evaluated on binary classification datasets.
arXiv Detail & Related papers (2022-01-04T14:14:13Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
We introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method.
We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks.
arXiv Detail & Related papers (2020-12-23T18:11:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.