Linear Projections of Teacher Embeddings for Few-Class Distillation
- URL: http://arxiv.org/abs/2409.20449v2
- Date: Wed, 2 Oct 2024 02:36:30 GMT
- Title: Linear Projections of Teacher Embeddings for Few-Class Distillation
- Authors: Noel Loo, Fotis Iliopoulos, Wei Hu, Erik Vee,
- Abstract summary: Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model.
We introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP)
Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems.
- Score: 14.99228980898161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model. Traditionally, KD involves training the student to mimic the teacher's output probabilities, while more advanced techniques have explored guiding the student to adopt the teacher's internal representations. Despite its widespread success, the performance of KD in binary classification and few-class problems has been less satisfactory. This is because the information about the teacher model's generalization patterns scales directly with the number of classes. Moreover, several sophisticated distillation methods may not be universally applicable or effective for data types beyond Computer Vision. Consequently, effective distillation techniques remain elusive for a range of key real-world applications, such as sentiment analysis, search query understanding, and advertisement-query relevance assessment. Taking these observations into account, we introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP). Inspired by recent findings about the structure of final-layer representations, LELP works by identifying informative linear subspaces in the teacher's embedding space, and splitting them into pseudo-subclasses. The student model is then trained to replicate these pseudo-classes. Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems, where most KD methods suffer.
Related papers
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.
In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.
We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning [30.70974942397732]
We propose PromptKD to enable generative language models to transfer student-friendly knowledge.
Experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance.
Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process.
arXiv Detail & Related papers (2024-02-20T09:10:08Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - AD-KD: Attribution-Driven Knowledge Distillation for Language Model
Compression [26.474962405945316]
We present a novel attribution-driven knowledge distillation approach to compress pre-trained language models.
To enhance the knowledge transfer of model reasoning and generalization, we explore multi-view attribution distillation on all potential decisions of the teacher.
arXiv Detail & Related papers (2023-05-17T07:40:12Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Knowledge Distillation Meets Open-Set Semi-Supervised Learning [69.21139647218456]
We propose a novel em modelname (bfem shortname) method dedicated for distilling representational knowledge semantically from a pretrained teacher to a target student.
At the problem level, this establishes an interesting connection between knowledge distillation with open-set semi-supervised learning (SSL)
Our shortname outperforms significantly previous state-of-the-art knowledge distillation methods on both coarse object classification and fine face recognition tasks.
arXiv Detail & Related papers (2022-05-13T15:15:27Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or ensemble of models (teacher)
In this study, we provide an extensive study on nine different KD methods which covers a broad spectrum of approaches to capture and transfer knowledge.
arXiv Detail & Related papers (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.