COLLAGE: Collaborative Human-Agent Interaction Generation using Hierarchical Latent Diffusion and Language Models
- URL: http://arxiv.org/abs/2409.20502v1
- Date: Mon, 30 Sep 2024 17:02:13 GMT
- Title: COLLAGE: Collaborative Human-Agent Interaction Generation using Hierarchical Latent Diffusion and Language Models
- Authors: Divyanshu Daiya, Damon Conover, Aniket Bera,
- Abstract summary: Large language models (LLMs) and hierarchical motion-specific vector-quantized variational autoencoders (VQ-VAEs) are proposed.
Our framework generates realistic and diverse collaborative human-object-human interactions, outperforming state-of-the-art methods.
Our work opens up new possibilities for modeling complex interactions in various domains, such as robotics, graphics and computer vision.
- Score: 14.130327598928778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a novel framework COLLAGE for generating collaborative agent-object-agent interactions by leveraging large language models (LLMs) and hierarchical motion-specific vector-quantized variational autoencoders (VQ-VAEs). Our model addresses the lack of rich datasets in this domain by incorporating the knowledge and reasoning abilities of LLMs to guide a generative diffusion model. The hierarchical VQ-VAE architecture captures different motion-specific characteristics at multiple levels of abstraction, avoiding redundant concepts and enabling efficient multi-resolution representation. We introduce a diffusion model that operates in the latent space and incorporates LLM-generated motion planning cues to guide the denoising process, resulting in prompt-specific motion generation with greater control and diversity. Experimental results on the CORE-4D, and InterHuman datasets demonstrate the effectiveness of our approach in generating realistic and diverse collaborative human-object-human interactions, outperforming state-of-the-art methods. Our work opens up new possibilities for modeling complex interactions in various domains, such as robotics, graphics and computer vision.
Related papers
- MATRIX: Multi-Agent Trajectory Generation with Diverse Contexts [47.12378253630105]
We study trajectory-level data generation for multi-human or human-robot interaction scenarios.
We propose a learning-based automatic trajectory generation model, which we call Multi-Agent TRajectory generation with dIverse conteXts (MATRIX)
arXiv Detail & Related papers (2024-03-09T23:28:54Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
We introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions.
MEM module enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities.
arXiv Detail & Related papers (2024-02-01T02:43:20Z) - A Grammatical Compositional Model for Video Action Detection [24.546886938243393]
We present a novel Grammatical Compositional Model (GCM) for action detection based on typical And-Or graphs.
Our model exploits the intrinsic structures and latent relationships of actions in a hierarchical manner to harness both the compositionality of grammar models and the capability of expressing rich features of DNNs.
arXiv Detail & Related papers (2023-10-04T15:24:00Z) - Stochastic Multi-Person 3D Motion Forecasting [21.915057426589744]
We deal with the ignored real-world complexities in prior work on human motion forecasting.
Our framework is general; we instantiate it with different generative models.
Our approach produces diverse and accurate multi-person predictions, significantly outperforming the state of the art.
arXiv Detail & Related papers (2023-06-08T17:59:09Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multiscale Generative Models: Improving Performance of a Generative
Model Using Feedback from Other Dependent Generative Models [10.053377705165786]
We take a first step towards building interacting generative models (GANs) that reflects the interaction in real world.
We build and analyze a hierarchical set-up where a higher-level GAN is conditioned on the output of multiple lower-level GANs.
We present a technique of using feedback from the higher-level GAN to improve performance of lower-level GANs.
arXiv Detail & Related papers (2022-01-24T13:05:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.