Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers
- URL: http://arxiv.org/abs/2409.20537v1
- Date: Mon, 30 Sep 2024 17:39:41 GMT
- Title: Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers
- Authors: Lirui Wang, Xinlei Chen, Jialiang Zhao, Kaiming He,
- Abstract summary: We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a trunk of a policy neural network to learn a task and embodiment shared representation.
We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets.
HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks.
- Score: 41.069074375686164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the roadblocks for training generalist robotic models today is heterogeneity. Previous robot learning methods often collect data to train with one specific embodiment for one task, which is expensive and prone to overfitting. This work studies the problem of learning policy representations through heterogeneous pre-training on robot data across different embodiments and tasks at scale. We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a large, shareable trunk of a policy neural network to learn a task and embodiment agnostic shared representation. This general architecture aligns the specific proprioception and vision inputs from distinct embodiments to a short sequence of tokens and then processes such tokens to map to control robots for different tasks. Leveraging the recent large-scale multi-embodiment real-world robotic datasets as well as simulation, deployed robots, and human video datasets, we investigate pre-training policies across heterogeneity. We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets. HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks in multiple simulator benchmarks and real-world settings. See the project website (https://liruiw.github.io/hpt/) for code and videos.
Related papers
- Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance [66.51390591688802]
Value-Guided Policy Steering (V-GPS) is compatible with a wide range of different generalist policies, without needing to fine-tune or even access the weights of the policy.
We show that the same value function can improve the performance of five different state-of-the-art policies with different architectures.
arXiv Detail & Related papers (2024-10-17T17:46:26Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - EquiBot: SIM(3)-Equivariant Diffusion Policy for Generalizable and Data Efficient Learning [36.0274770291531]
We propose Equibot, a robust, data-efficient, and generalizable approach for robot manipulation task learning.
Our approach combines SIM(3)-equivariant neural network architectures with diffusion models.
We show that our method can easily generalize to novel objects and scenes after learning from just 5 minutes of human demonstrations in each task.
arXiv Detail & Related papers (2024-07-01T17:09:43Z) - PoCo: Policy Composition from and for Heterogeneous Robot Learning [44.1315170137613]
Current methods usually collect and pool all data from one domain to train a single policy.
We present a flexible approach, dubbed Policy Composition, to combine information across diverse modalities and domains.
Our method can use task-level composition for multi-task manipulation and be composed with analytic cost functions to adapt policy behaviors at inference time.
arXiv Detail & Related papers (2024-02-04T14:51:49Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Imitating Task and Motion Planning with Visuomotor Transformers [71.41938181838124]
Task and Motion Planning (TAMP) can autonomously generate large-scale datasets of diverse demonstrations.
In this work, we show that the combination of large-scale datasets generated by TAMP supervisors and flexible Transformer models to fit them is a powerful paradigm for robot manipulation.
We present a novel imitation learning system called OPTIMUS that trains large-scale visuomotor Transformer policies by imitating a TAMP agent.
arXiv Detail & Related papers (2023-05-25T17:58:14Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z) - Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub
Robot [20.813028212068424]
We study different techniques that allow adapting an object segmentation model in presence of novel objects or different domains.
We propose a pipeline for fast instance segmentation learning for robotic applications where data come in stream.
We benchmark the proposed pipeline on two datasets and we deploy it on a real robot, iCub humanoid.
arXiv Detail & Related papers (2022-06-27T17:14:04Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.