Maia-2: A Unified Model for Human-AI Alignment in Chess
- URL: http://arxiv.org/abs/2409.20553v2
- Date: Thu, 31 Oct 2024 23:29:28 GMT
- Title: Maia-2: A Unified Model for Human-AI Alignment in Chess
- Authors: Zhenwei Tang, Difan Jiao, Reid McIlroy-Young, Jon Kleinberg, Siddhartha Sen, Ashton Anderson,
- Abstract summary: We propose a unified modeling approach for human-AI alignment in chess.
We introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions.
Our results pave the way for deeper insights into human decision-making and AI-guided teaching tools.
- Score: 10.577896749797485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are an increasing number of domains in which artificial intelligence (AI) systems both surpass human ability and accurately model human behavior. This introduces the possibility of algorithmically-informed teaching in these domains through more relatable AI partners and deeper insights into human decision-making. Critical to achieving this goal, however, is coherently modeling human behavior at various skill levels. Chess is an ideal model system for conducting research into this kind of human-AI alignment, with its rich history as a pivotal testbed for AI research, mature superhuman AI systems like AlphaZero, and precise measurements of skill via chess rating systems. Previous work in modeling human decision-making in chess uses completely independent models to capture human style at different skill levels, meaning they lack coherence in their ability to adapt to the full spectrum of human improvement and are ultimately limited in their effectiveness as AI partners and teaching tools. In this work, we propose a unified modeling approach for human-AI alignment in chess that coherently captures human style across different skill levels and directly captures how people improve. Recognizing the complex, non-linear nature of human learning, we introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions, enabling our model to be sensitive to evolving player skill. Our experimental results demonstrate that this unified framework significantly enhances the alignment between AI and human players across a diverse range of expertise levels, paving the way for deeper insights into human decision-making and AI-guided teaching tools.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Bridging the Human-AI Knowledge Gap: Concept Discovery and Transfer in
AlphaZero [10.569213003371654]
We show how to extract new chess concepts from AlphaZero, an AI system that mastered the game of chess via self-play without human supervision.
In a human study, we show that these concepts are learnable by top human experts, as four top chess grandmasters show improvements in solving the presented concept prototype positions.
This marks an important first milestone in advancing the frontier of human knowledge by leveraging AI.
arXiv Detail & Related papers (2023-10-25T06:49:26Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
We present a novel formulation of the interaction between the human and the AI as a sequential game.
We show that in this case the AI's problem of helping bounded-rational humans make better decisions reduces to a Bayes-adaptive POMDP.
We discuss ways in which the machine can learn to improve upon its own limitations as well with the help of the human.
arXiv Detail & Related papers (2022-04-03T21:00:51Z) - Instructive artificial intelligence (AI) for human training, assistance,
and explainability [0.24629531282150877]
We show how a neural network might instruct human trainees as an alternative to traditional approaches to explainable AI (XAI)
An AI examines human actions and calculates variations on the human strategy that lead to better performance.
Results will be presented on AI instruction's ability to improve human decision-making and human-AI teaming in Hanabi.
arXiv Detail & Related papers (2021-11-02T16:46:46Z) - Learning Models of Individual Behavior in Chess [4.793072503820555]
We develop highly accurate predictive models of individual human behavior in chess.
Our work demonstrates a way to bring AI systems into better alignment with the behavior of individual people.
arXiv Detail & Related papers (2020-08-23T18:24:21Z) - Aligning Superhuman AI with Human Behavior: Chess as a Model System [5.236087378443016]
We develop Maia, a customized version of Alpha-Zero trained on human chess games, that predicts human moves at a much higher accuracy than existing engines.
For a dual task of predicting whether a human will make a large mistake on the next move, we develop a deep neural network that significantly outperforms competitive baselines.
arXiv Detail & Related papers (2020-06-02T18:12:52Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.