MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
- URL: http://arxiv.org/abs/2409.20566v1
- Date: Mon, 30 Sep 2024 17:59:34 GMT
- Title: MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
- Authors: Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti Shah, Xianzhi Du, Bowen Zhang, Yanghao Li, Sam Dodge, Keen You, Zhen Yang, Aleksei Timofeev, Mingze Xu, Hong-You Chen, Jean-Philippe Fauconnier, Zhengfeng Lai, Haoxuan You, Zirui Wang, Afshin Dehghan, Peter Grasch, Yinfei Yang,
- Abstract summary: We present MM1.5, a new family of multimodal large language models (MLLMs)
Our models range from 1B to 30B parameters, encompassing both dense and mixture-of-experts (MoE) variants.
We provide detailed insights into the training processes and decisions that inform our final designs.
- Score: 74.34171839925114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MM1.5, a new family of multimodal large language models (MLLMs) designed to enhance capabilities in text-rich image understanding, visual referring and grounding, and multi-image reasoning. Building upon the MM1 architecture, MM1.5 adopts a data-centric approach to model training, systematically exploring the impact of diverse data mixtures across the entire model training lifecycle. This includes high-quality OCR data and synthetic captions for continual pre-training, as well as an optimized visual instruction-tuning data mixture for supervised fine-tuning. Our models range from 1B to 30B parameters, encompassing both dense and mixture-of-experts (MoE) variants, and demonstrate that careful data curation and training strategies can yield strong performance even at small scales (1B and 3B). Additionally, we introduce two specialized variants: MM1.5-Video, designed for video understanding, and MM1.5-UI, tailored for mobile UI understanding. Through extensive empirical studies and ablations, we provide detailed insights into the training processes and decisions that inform our final designs, offering valuable guidance for future research in MLLM development.
Related papers
- NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.
MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.
Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - SVIT: Scaling up Visual Instruction Tuning [26.794950789335402]
We build a dataset of 4.2 million visual instruction tuning data including 1.6M conversation question-answer (QA) pairs, 1.6M complex reasoning QA pairs, 1.0M referring QA pairs and 106K detailed image descriptions.
Experiments verify that SVIT-v1.5, trained on the proposed dataset, outperforms state-of-the-art Multimodal Large Language Models on popular benchmarks.
arXiv Detail & Related papers (2023-07-09T03:25:14Z) - What Matters in Training a GPT4-Style Language Model with Multimodal
Inputs? [24.676820488258336]
Large Language Models (LLMs) have displayed exceptional multi-modal capabilities in following open-ended instructions given images.
These models rely on design choices such as network structures, training data, and training strategies.
This paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models.
arXiv Detail & Related papers (2023-07-05T17:44:28Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.