Mixture of Multicenter Experts in Multimodal Generative AI for Advanced Radiotherapy Target Delineation
- URL: http://arxiv.org/abs/2410.00046v2
- Date: Sat, 26 Oct 2024 15:22:04 GMT
- Title: Mixture of Multicenter Experts in Multimodal Generative AI for Advanced Radiotherapy Target Delineation
- Authors: Yujin Oh, Sangjoon Park, Xiang Li, Wang Yi, Jonathan Paly, Jason Efstathiou, Annie Chan, Jun Won Kim, Hwa Kyung Byun, Ik Jae Lee, Jaeho Cho, Chan Woo Wee, Peng Shu, Peilong Wang, Nathan Yu, Jason Holmes, Jong Chul Ye, Quanzheng Li, Wei Liu, Woong Sub Koom, Jin Sung Kim, Kyungsang Kim,
- Abstract summary: We introduce the Mixture of Multicenter Experts (MoME) approach to train medical artificial intelligence models.
MoME strategically integrates specialized expertise from diverse clinical strategies, enhancing the AI model's ability to generalize.
The framework enables the deployment of AI-based target volume delineation models in resource-constrained medical facilities.
- Score: 43.21982155078846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical experts employ diverse philosophies and strategies in patient care, influenced by regional patient populations. However, existing medical artificial intelligence (AI) models are often trained on data distributions that disproportionately reflect highly prevalent patterns, reinforcing biases and overlooking the diverse expertise of clinicians. To overcome this limitation, we introduce the Mixture of Multicenter Experts (MoME) approach. This method strategically integrates specialized expertise from diverse clinical strategies, enhancing the AI model's ability to generalize and adapt across multiple medical centers. The MoME-based multimodal target volume delineation model, trained with few-shot samples including images and clinical notes from each medical center, outperformed baseline methods in prostate cancer radiotherapy target delineation. The advantages of MoME were most pronounced when data characteristics varied across centers or when data availability was limited, demonstrating its potential for broader clinical applications. Therefore, the MoME framework enables the deployment of AI-based target volume delineation models in resource-constrained medical facilities by adapting to specific preferences of each medical center only using a few sample data, without the need for data sharing between institutions. Expanding the number of multicenter experts within the MoME framework will significantly enhance the generalizability, while also improving the usability and adaptability of clinical AI applications in the field of precision radiation oncology.
Related papers
- Navigating the landscape of multimodal AI in medicine: a scoping review on technical challenges and clinical applications [2.3754862363513523]
This review examines the landscape of deep learning-based multimodal AI applications across the medical domain.
multimodal AI models consistently outperform their unimodal counterparts, with an average improvement of 6.2 percentage points in AUC.
We identify key factors driving multimodal AI development and propose recommendations to accelerate the field's maturation.
arXiv Detail & Related papers (2024-11-06T09:18:05Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
This study introduces a novel knowledge injection approach, FedKIM, to scale the medical foundation model within a federated learning framework.
FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model.
Our experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings.
arXiv Detail & Related papers (2024-08-17T15:42:29Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
We propose a novel framework that tackles both discriminative and generative multimodal medical tasks.
The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning.
Our model can achieve performance superior to or on par with state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-16T02:35:17Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Towards AI-Based Precision Oncology: A Machine Learning Framework for Personalized Counterfactual Treatment Suggestions based on Multi-Omics Data [0.05025737475817938]
We propose a modular machine learning framework designed for personalized counterfactual cancer treatment suggestions.
The framework is tailored to address critical challenges inherent in data-driven cancer research.
Our method aims to empower clinicians with a reality-centric decision-support tool.
arXiv Detail & Related papers (2024-02-19T14:54:20Z) - Review of multimodal machine learning approaches in healthcare [0.0]
Clinicians rely on a variety of data sources to make informed decisions.
Recent advances in machine learning have facilitated the more efficient incorporation of multimodal data.
arXiv Detail & Related papers (2024-02-04T12:21:38Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.