ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer
- URL: http://arxiv.org/abs/2410.00086v2
- Date: Tue, 5 Nov 2024 12:25:32 GMT
- Title: ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer
- Authors: Zhen Han, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang, Chaojie Mao, Chenwei Xie, Yu Liu, Jingren Zhou,
- Abstract summary: We propose ACE, an All-round Creator and Editor, for visual generation tasks.
We first introduce a unified condition format termed Long-context Condition Unit (LCU)
We then propose a novel Transformer-based diffusion model that uses LCU as input, aiming for joint training across various generation and editing tasks.
- Score: 40.32254040909614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as a powerful generative technology and have been found to be applicable in various scenarios. Most existing foundational diffusion models are primarily designed for text-guided visual generation and do not support multi-modal conditions, which are essential for many visual editing tasks. This limitation prevents these foundational diffusion models from serving as a unified model in the field of visual generation, like GPT-4 in the natural language processing field. In this work, we propose ACE, an All-round Creator and Editor, which achieves comparable performance compared to those expert models in a wide range of visual generation tasks. To achieve this goal, we first introduce a unified condition format termed Long-context Condition Unit (LCU), and propose a novel Transformer-based diffusion model that uses LCU as input, aiming for joint training across various generation and editing tasks. Furthermore, we propose an efficient data collection approach to address the issue of the absence of available training data. It involves acquiring pairwise images with synthesis-based or clustering-based pipelines and supplying these pairs with accurate textual instructions by leveraging a fine-tuned multi-modal large language model. To comprehensively evaluate the performance of our model, we establish a benchmark of manually annotated pairs data across a variety of visual generation tasks. The extensive experimental results demonstrate the superiority of our model in visual generation fields. Thanks to the all-in-one capabilities of our model, we can easily build a multi-modal chat system that responds to any interactive request for image creation using a single model to serve as the backend, avoiding the cumbersome pipeline typically employed in visual agents. Code and models will be available on the project page: https://ali-vilab.github.io/ace-page/.
Related papers
- LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiT is a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework.
We introduce key innovations to optimize generative performance for vision tasks.
The model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks.
arXiv Detail & Related papers (2024-11-18T12:05:27Z) - Show-o: One Single Transformer to Unify Multimodal Understanding and Generation [24.58881004205822]
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation.
Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities.
arXiv Detail & Related papers (2024-08-22T16:32:32Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - DiffusionGPT: LLM-Driven Text-to-Image Generation System [39.15054464137383]
DiffusionGPT offers a unified generation system capable of seamlessly accommodating various types of prompts and integrating domain-expert models.
LLM parses the prompt and employs the Trees-of-Thought to guide the selection of an appropriate model, thereby relaxing input constraints.
We introduce Advantage Databases, where the Tree-of-Thought is enriched with human feedback, aligning the model selection process with human preferences.
arXiv Detail & Related papers (2024-01-18T15:30:58Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
This paper introduces a novel approach to enhance the multimodal capabilities of existing models.
Our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works.
Our results indicate a improvement of 5-6 % in performance, with Veagle outperforming existing models by a notable margin.
arXiv Detail & Related papers (2024-01-18T12:45:25Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusion is a new subject-driven image generation model that supports multimodal control.
Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation.
arXiv Detail & Related papers (2023-05-24T04:51:04Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.