Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
- URL: http://arxiv.org/abs/2410.00149v1
- Date: Mon, 30 Sep 2024 18:45:00 GMT
- Title: Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
- Authors: Divya Patel, Pathik Patel, Ankush Chander, Sourish Dasgupta, Tanmoy Chakraborty,
- Abstract summary: Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization.
We propose a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure.
We evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades when probed with richer prompts.
- Score: 14.231110627461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization. However, saliency is subject to the users' specific preference histories. Hence, we need reliable In-Context Personalization Learning (ICPL) capabilities within such LLMs. For any arbitrary LLM to exhibit ICPL, it needs to have the ability to discern contrast in user profiles. A recent study proposed a measure for degree-of-personalization called EGISES for the first time. EGISES measures a model's responsiveness to user profile differences. However, it cannot test if a model utilizes all three types of cues provided in ICPL prompts: (i) example summaries, (ii) user's reading histories, and (iii) contrast in user profiles. To address this, we propose the iCOPERNICUS framework, a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure. As a case-study, we evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades (min: 1.6%; max: 3.6%) when probed with richer prompts, thereby showing lack of true ICPL.
Related papers
- ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods [56.073335779595475]
We propose ReCaLL (Relative Conditional Log-Likelihood), a novel membership inference attack (MIA)
ReCaLL examines the relative change in conditional log-likelihoods when prefixing target data points with non-member context.
We conduct comprehensive experiments and show that ReCaLL achieves state-of-the-art performance on the WikiMIA dataset.
arXiv Detail & Related papers (2024-06-23T00:23:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - DAIL: Data Augmentation for In-Context Learning via Self-Paraphrase [37.68804898063595]
In-Context Learning (ICL) combined with pre-trained large language models has achieved promising results on various NLP tasks.
We propose textbfData textbfAugmentation for textbfIn-Context textbfLearning (textbfDAIL)
arXiv Detail & Related papers (2023-11-06T18:12:55Z) - Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks [54.153914606302486]
In-context learning (ICL) ability has emerged with the increasing scale of large language models (LLMs)
We propose a new paradigm called Hint-enhanced In-Context Learning (HICL) to explore the power of ICL in open-domain question answering.
arXiv Detail & Related papers (2023-11-03T14:39:20Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation.
We propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation.
arXiv Detail & Related papers (2023-10-15T06:12:58Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - BYOC: Personalized Few-Shot Classification with Co-Authored Class
Descriptions [2.076173115539025]
We propose a novel approach to few-shot text classification using an LLM.
Rather than few-shot examples, the LLM is prompted with descriptions of the salient features of each class.
Examples, questions, and answers are summarized to form the classification prompt.
arXiv Detail & Related papers (2023-10-09T19:37:38Z) - Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning [37.22349652230841]
Large language models (LLMs) enable in-context learning (ICL) by conditioning on a few labeled training examples as a text-based prompt.
In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets.
We introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL.
arXiv Detail & Related papers (2023-09-26T09:06:39Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
We propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs)
We build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs.
Results show that popular n-gram matching metrics generally can not correlate well with human judgment.
arXiv Detail & Related papers (2023-07-20T17:59:41Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
Large language models (LLMs) have initiated a paradigm shift in transfer learning.
In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training.
We find that during ICL, the attention and hidden features in LLMs match the behaviors of a kernel regression.
arXiv Detail & Related papers (2023-05-22T06:45:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.