T-KAER: Transparency-enhanced Knowledge-Augmented Entity Resolution Framework
- URL: http://arxiv.org/abs/2410.00218v1
- Date: Mon, 30 Sep 2024 20:32:12 GMT
- Title: T-KAER: Transparency-enhanced Knowledge-Augmented Entity Resolution Framework
- Authors: Lan Li, Liri Fang, Yiren Liu, Vetle I. Torvik, Bertram Ludaescher,
- Abstract summary: This paper introduces T-KAER, the Transparency-enhanced Knowledge-Augmented Entity Resolution framework.
To enhance transparency, three Transparency-related Questions (T-Qs) have been proposed.
To address the T-Qs, T-KAER is designed to improve transparency by documenting the entity resolution processes in log files.
- Score: 2.8894038270224858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity resolution (ER) is the process of determining whether two representations refer to the same real-world entity and plays a crucial role in data curation and data cleaning. Recent studies have introduced the KAER framework, aiming to improve pre-trained language models by augmenting external knowledge. However, identifying and documenting the external knowledge that is being augmented and understanding its contribution to the model's predictions have received little to no attention in the research community. This paper addresses this gap by introducing T-KAER, the Transparency-enhanced Knowledge-Augmented Entity Resolution framework. To enhance transparency, three Transparency-related Questions (T-Qs) have been proposed: T-Q(1): What is the experimental process for matching results based on data inputs? T-Q(2): Which semantic information does KAER augment in the raw data inputs? T-Q(3): Which semantic information of the augmented data inputs influences the predictions? To address the T-Qs, T-KAER is designed to improve transparency by documenting the entity resolution processes in log files. In experiments, a citation dataset is used to demonstrate the transparency components of T-KAER. This demonstration showcases how T-KAER facilitates error analysis from both quantitative and qualitative perspectives, providing evidence on "what" semantic information is augmented and "why" the augmented knowledge influences predictions differently.
Related papers
- Enhancing and Exploring Mild Cognitive Impairment Detection with W2V-BERT-2.0 [1.3988930016464454]
This study explores a multi-lingual audio self-supervised learning model for detecting mild cognitive impairment (MCI) using the TAUKADIAL cross-lingual dataset.
To address these issues, the study utilizes features directly from speech utterances with W2V-BERT-2.0.
The experiment shows competitive results, and the proposed inference logic significantly contributes to the improvements from the baseline.
arXiv Detail & Related papers (2025-01-27T16:55:38Z) - AFFAKT: A Hierarchical Optimal Transport based Method for Affective Facial Knowledge Transfer in Video Deception Detection [3.920204205770502]
We propose a novel method called AFFAKT, which enhances the classification performance by transferring useful and correlated knowledge from a large facial expression dataset.
Experimental results on two deception detection datasets demonstrate the superior performance of our proposed method.
arXiv Detail & Related papers (2024-12-12T05:57:59Z) - Explainability for Transparent Conversational Information-Seeking [13.790574266700006]
This study explores different methods of explaining the responses.
By exploring transparency across explanation type, quality, and presentation mode, this research aims to bridge the gap between system-generated responses and responses verifiable by the user.
arXiv Detail & Related papers (2024-05-06T09:25:14Z) - Injecting linguistic knowledge into BERT for Dialogue State Tracking [60.42231674887294]
This paper proposes a method that extracts linguistic knowledge via an unsupervised framework.
We then utilize this knowledge to augment BERT's performance and interpretability in Dialogue State Tracking (DST) tasks.
We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.
arXiv Detail & Related papers (2023-11-27T08:38:42Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Distinguish Before Answer: Generating Contrastive Explanation as
Knowledge for Commonsense Question Answering [61.53454387743701]
We propose CPACE, a concept-centric Prompt-bAsed Contrastive Explanation Generation model.
CPACE converts obtained symbolic knowledge into a contrastive explanation for better distinguishing the differences among given candidates.
We conduct a series of experiments on three widely-used question-answering datasets: CSQA, QASC, and OBQA.
arXiv Detail & Related papers (2023-05-14T12:12:24Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.