Disentangling collective coupling in vibrational polaritons with double quantum coherence spectroscopy
- URL: http://arxiv.org/abs/2410.00494v1
- Date: Tue, 1 Oct 2024 08:24:40 GMT
- Title: Disentangling collective coupling in vibrational polaritons with double quantum coherence spectroscopy
- Authors: Thomas Schnappinger, Cyril Falvo, Markus Kowalewski,
- Abstract summary: Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity.
We simulate two-dimensional infrared spectra of molecular vibrational polaritons based on the double quantum coherence technique.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet. We simulate two-dimensional infrared spectra of molecular vibrational polaritons based on the double quantum coherence technique to gain further insight into the complex many-body structure of these hybrid light-matter states. Double quantum coherence uniquely resolves the excitation of hybrid light-matter polaritons and allows to directly probe the anharmonicities of the resulting states. By combining the cavity Born-Oppenheimer Hartree-Fock ansatz with a full quantum dynamics simulation of the corresponding eigenstates, we go beyond simplified model systems. This allows us to study the influence of self-polarization and the response of the electronic structure to the cavity interaction on the spectral features even beyond the single-molecule case.
Related papers
- Semiclassical truncated-Wigner-approximation theory of
molecular-vibration-polariton dynamics in optical cavities [0.0]
We develop here the semiclassical theory of molecular-vibration-polariton dynamics based on the truncated Wigner approximation (TWA)
The validity of TWA is examined by comparing it with the fully quantum dynamics of a single-molecule system.
The collective and resonance effects of molecular-vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
arXiv Detail & Related papers (2023-11-14T01:06:22Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Ab-Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule
Systems [0.0]
We present an ab-initio methodology, based on the cavity Born-Oppenheimer Hartree-Fock ansatz, to calculate vibro-polaritonic IR spectra.
Our semi-classical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra.
arXiv Detail & Related papers (2023-10-03T08:16:21Z) - Cavity-Born-Oppenheimer Hartree-Fock Ansatz: Light-matter Properties of
Strongly Coupled Molecular Ensembles [0.0]
We present an ab-initio Hartree-Fock ansatz in the framework of the cavity Born-Oppenheimer approximation.
We study the collective effects in ensembles of strongly coupled diatomic hydrogen fluoride molecules.
arXiv Detail & Related papers (2023-07-05T11:20:24Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Giant optomechanical spring effect in plasmonic nano- and picocavities
probed by surface-enhanced Raman scattering [8.713553888457293]
Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics.
We show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling.
arXiv Detail & Related papers (2022-04-20T17:35:26Z) - Cooperative subwavelength molecular quantum emitter arrays [0.0]
Dipole-coupled subwavelength quantum emitter arrays respond cooperatively to external light fields as they may host collective excitations with super- or subradiant character.
We provide analytical and numerical results on the modification of super- and subradiance in molecular rings of dipoles.
We extend previous predictions for the generation of coherent light from ideal quantum emitters to molecular emitters, quantifying the role of vibronic coupling onto the output intensity and coherence.
arXiv Detail & Related papers (2022-03-09T19:00:59Z) - Exciton-photon complexes and dynamics in the concurrent strong-weak
coupling regime of singular site-controlled cavity quantum electrodynamics [13.810406780342314]
We investigate the exciton complexes photoluminescence, dynamics and photon statistics in the concurrent strong weak coupling regime.
We demonstrate the strong and weak coupling can coexist dynamically, as a form of intermediate regime mediated by phonon scattering.
This study suggests our device has potential for new and subtle cavity quantum electrodynamical phenomena, cavity enhanced indistinguishable single photon generation, and cluster state generation via the exciton-photon complexes for quantum networks.
arXiv Detail & Related papers (2021-07-14T07:21:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Non-reciprocal Cavity Polariton with Atoms Strongly Coupled to Optical
Cavity [21.013802417752025]
We experimentally demonstrate a chiral cavity QED system with multiple atoms strongly coupled to a Fabry-Perot cavity.
By polarizing the internal quantum state of the atoms, the time-reversal symmetry of the atom-cavity interaction is broken.
The strongly coupled atom-cavity system can be described by non-reciprocal quasiparticles, i.e., the cavity polariton.
arXiv Detail & Related papers (2019-11-23T02:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.