Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
- URL: http://arxiv.org/abs/2410.00542v1
- Date: Tue, 1 Oct 2024 09:34:06 GMT
- Title: Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
- Authors: Kristian Schwethelm, Johannes Kaiser, Jonas Kuntzer, Mehmet Yigitsoy, Daniel Rueckert, Georgios Kaissis,
- Abstract summary: We introduce differentially private active learning (DP-AL) for standard learning settings.
We demonstrate that naively integrating DP-SGD training into AL presents substantial challenges in privacy budget allocation and data utilization.
Our experiments on vision and natural language processing tasks show that DP-AL can improve performance for specific datasets and model architectures.
- Score: 11.716423801223776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning (AL) is a widely used technique for optimizing data labeling in machine learning by iteratively selecting, labeling, and training on the most informative data. However, its integration with formal privacy-preserving methods, particularly differential privacy (DP), remains largely underexplored. While some works have explored differentially private AL for specialized scenarios like online learning, the fundamental challenge of combining AL with DP in standard learning settings has remained unaddressed, severely limiting AL's applicability in privacy-sensitive domains. This work addresses this gap by introducing differentially private active learning (DP-AL) for standard learning settings. We demonstrate that naively integrating DP-SGD training into AL presents substantial challenges in privacy budget allocation and data utilization. To overcome these challenges, we propose step amplification, which leverages individual sampling probabilities in batch creation to maximize data point participation in training steps, thus optimizing data utilization. Additionally, we investigate the effectiveness of various acquisition functions for data selection under privacy constraints, revealing that many commonly used functions become impractical. Our experiments on vision and natural language processing tasks show that DP-AL can improve performance for specific datasets and model architectures. However, our findings also highlight the limitations of AL in privacy-constrained environments, emphasizing the trade-offs between privacy, model accuracy, and data selection accuracy.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privately Learning from Graphs with Applications in Fine-tuning Large Language Models [16.972086279204174]
relational data in sensitive domains such as finance and healthcare often contain private information.
Existing privacy-preserving methods, such as DP-SGD, are not well-suited for relational learning.
We propose a privacy-preserving relational learning pipeline that decouples dependencies in sampled relations during training.
arXiv Detail & Related papers (2024-10-10T18:38:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Approximate Gradient Coding for Privacy-Flexible Federated Learning with Non-IID Data [9.984630251008868]
This work focuses on the challenges of non-IID data and stragglers/dropouts in federated learning.
We introduce and explore a privacy-flexible paradigm that models parts of the clients' local data as non-private.
arXiv Detail & Related papers (2024-04-04T15:29:50Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Safeguarding Data in Multimodal AI: A Differentially Private Approach to
CLIP Training [15.928338716118697]
We introduce a differentially private adaptation of the Contrastive Language-Image Pretraining (CLIP) model.
Our proposed method, Dp-CLIP, is rigorously evaluated on benchmark datasets.
arXiv Detail & Related papers (2023-06-13T23:32:09Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Task-aware Privacy Preservation for Multi-dimensional Data [4.138783926370621]
Local differential privacy (LDP) is a state-of-the-art technique for privacy preservation.
In the future, LDP can be adopted to anonymize richer user data attributes.
We show how to significantly improve the ultimate task performance for multi-dimensional user data by considering a task-aware privacy preservation problem.
arXiv Detail & Related papers (2021-10-05T20:03:53Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.