A Critical Assessment of Visual Sound Source Localization Models Including Negative Audio
- URL: http://arxiv.org/abs/2410.01020v1
- Date: Tue, 1 Oct 2024 19:28:45 GMT
- Title: A Critical Assessment of Visual Sound Source Localization Models Including Negative Audio
- Authors: Xavier Juanola, Gloria Haro, Magdalena Fuentes,
- Abstract summary: This paper introduces a novel test set and metrics designed to complete the current standard evaluation of Visual Sound Source localization models.
We consider three types of negative audio: silence, noise and offscreen.
Our analysis reveals that numerous SOTA models fail to appropriately adjust their predictions based on audio input.
- Score: 5.728456310555323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of Visual Sound Source Localization (VSSL) involves identifying the location of sound sources in visual scenes, integrating audio-visual data for enhanced scene understanding. Despite advancements in state-of-the-art (SOTA) models, we observe three critical flaws: i) The evaluation of the models is mainly focused in sounds produced by objects that are visible in the image, ii) The evaluation often assumes a prior knowledge of the size of the sounding object, and iii) No universal threshold for localization in real-world scenarios is established, as previous approaches only consider positive examples without accounting for both positive and negative cases. In this paper, we introduce a novel test set and metrics designed to complete the current standard evaluation of VSSL models by testing them in scenarios where none of the objects in the image corresponds to the audio input, i.e. a negative audio. We consider three types of negative audio: silence, noise and offscreen. Our analysis reveals that numerous SOTA models fail to appropriately adjust their predictions based on audio input, suggesting that these models may not be leveraging audio information as intended. Additionally, we provide a comprehensive analysis of the range of maximum values in the estimated audio-visual similarity maps, in both positive and negative audio cases, and show that most of the models are not discriminative enough, making them unfit to choose a universal threshold appropriate to perform sound localization without any a priori information of the sounding object, that is, object size and visibility.
Related papers
- Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning [55.2480439325792]
Large audio-language models (LALMs) have shown impressive capabilities in understanding and reasoning about audio and speech information.
These models still face challenges, including hallucinating non-existent sound events, misidentifying the order of sound events, and incorrectly attributing sound sources.
arXiv Detail & Related papers (2024-10-21T15:55:27Z) - A Suite for Acoustic Language Model Evaluation [20.802090523583196]
We introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response.
We evaluate several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method.
arXiv Detail & Related papers (2024-09-11T17:34:52Z) - Unveiling Visual Biases in Audio-Visual Localization Benchmarks [52.76903182540441]
We identify a significant issue in existing benchmarks.
The sounding objects are often easily recognized based solely on visual cues, which we refer to as visual bias.
Our findings suggest that existing AVSL benchmarks need further refinement to facilitate audio-visual learning.
arXiv Detail & Related papers (2024-08-25T04:56:08Z) - AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis [62.33446681243413]
view acoustic synthesis aims to render audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene.
Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing audio.
We propose a novel Audio-Visual Gaussian Splatting (AV-GS) model to characterize the entire scene environment.
Experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
arXiv Detail & Related papers (2024-06-13T08:34:12Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
Acoustic matching aims to re-synthesize an audio clip to sound as if it were recorded in a target acoustic environment.
We propose a self-supervised approach to visual acoustic matching where training samples include only the target scene image and audio.
Our approach jointly learns to disentangle room acoustics and re-synthesize audio into the target environment, via a conditional GAN framework and a novel metric.
arXiv Detail & Related papers (2023-07-27T17:59:59Z) - A Closer Look at Weakly-Supervised Audio-Visual Source Localization [26.828874753756523]
Audio-visual source localization is a challenging task that aims to predict the location of visual sound sources in a video.
We extend the test set of popular benchmarks, Flickr SoundNet and VGG-Sound Sources, in order to include negative samples.
We also propose a new approach for visual sound source localization that addresses both these problems.
arXiv Detail & Related papers (2022-08-30T14:17:46Z) - Visual Sound Localization in the Wild by Cross-Modal Interference
Erasing [90.21476231683008]
In real-world scenarios, audios are usually contaminated by off-screen sound and background noise.
We propose the Interference Eraser (IEr) framework, which tackles the problem of audio-visual sound source localization in the wild.
arXiv Detail & Related papers (2022-02-13T21:06:19Z) - Dual Normalization Multitasking for Audio-Visual Sounding Object
Localization [0.0]
We propose a new concept, Sounding Object, to reduce the ambiguity of the visual location of sound.
To tackle this new AVSOL problem, we propose a novel multitask training strategy and architecture called Dual Normalization Multitasking.
arXiv Detail & Related papers (2021-06-01T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.