ProxiMix: Enhancing Fairness with Proximity Samples in Subgroups
- URL: http://arxiv.org/abs/2410.01145v1
- Date: Wed, 2 Oct 2024 00:47:03 GMT
- Title: ProxiMix: Enhancing Fairness with Proximity Samples in Subgroups
- Authors: Jingyu Hu, Jun Hong, Mengnan Du, Weiru Liu,
- Abstract summary: Using linear mixup alone, a data augmentation technique, for bias mitigation, can still retain biases in dataset labels.
We propose a novel pre-processing strategy in which both an existing mixup method and our new bias mitigation algorithm can be utilized.
ProxiMix keeps both pairwise and proximity relationships for fairer data augmentation.
- Score: 17.672299431705262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many bias mitigation methods have been developed for addressing fairness issues in machine learning. We found that using linear mixup alone, a data augmentation technique, for bias mitigation, can still retain biases present in dataset labels. Research presented in this paper aims to address this issue by proposing a novel pre-processing strategy in which both an existing mixup method and our new bias mitigation algorithm can be utilized to improve the generation of labels of augmented samples, which are proximity aware. Specifically, we proposed ProxiMix which keeps both pairwise and proximity relationships for fairer data augmentation. We conducted thorough experiments with three datasets, three ML models, and different hyperparameters settings. Our experimental results showed the effectiveness of ProxiMix from both fairness of predictions and fairness of recourse perspectives.
Related papers
- A Survey on Mixup Augmentations and Beyond [59.578288906956736]
Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted.
This survey presents a comprehensive review of foundational mixup methods and their applications.
arXiv Detail & Related papers (2024-09-08T19:32:22Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - Tailoring Mixup to Data for Calibration [12.050401897136501]
Mixup is a technique for improving calibration and predictive uncertainty.
In this work, we argue that the likelihood of manifold intrusion increases with the distance between data to mix.
We propose to dynamically change the underlying distributions of coefficients depending on the similarity between samples to mix.
arXiv Detail & Related papers (2023-11-02T17:48:28Z) - AMPLIFY:Attention-based Mixup for Performance Improvement and Label Smoothing in Transformer [2.3072402651280517]
AMPLIFY uses the Attention mechanism of Transformer itself to reduce the influence of noises and aberrant values in the original samples on the prediction results.
The experimental results show that, under a smaller computational resource cost, AMPLIFY outperforms other Mixup methods in text classification tasks.
arXiv Detail & Related papers (2023-09-22T08:02:45Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Mixture of von Mises-Fisher distribution with sparse prototypes [0.0]
Mixtures of von Mises-Fisher distributions can be used to cluster data on the unit hypersphere.
We propose in this article to estimate a von Mises mixture using a l 1 penalized likelihood.
arXiv Detail & Related papers (2022-12-30T08:00:38Z) - DoubleMix: Simple Interpolation-Based Data Augmentation for Text
Classification [56.817386699291305]
This paper proposes a simple yet effective data augmentation approach termed DoubleMix.
DoubleMix first generates several perturbed samples for each training data.
It then uses the perturbed data and original data to carry out a two-step in the hidden space of neural models.
arXiv Detail & Related papers (2022-09-12T15:01:04Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data.
In this paper, we propose an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM)
DM can adaptively utilize hard mixed samples to mine discriminative features without losing the original smoothness of mixup.
arXiv Detail & Related papers (2022-03-21T07:12:18Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - On Mixup Regularization [16.748910388577308]
Mixup is a data augmentation technique that creates new examples as convex combinations of training points and labels.
We show how the random perturbation of the new interpretation of Mixup induces multiple known regularization schemes.
arXiv Detail & Related papers (2020-06-10T20:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.