Effective Tuning Strategies for Generalist Robot Manipulation Policies
- URL: http://arxiv.org/abs/2410.01220v1
- Date: Wed, 2 Oct 2024 04:00:25 GMT
- Title: Effective Tuning Strategies for Generalist Robot Manipulation Policies
- Authors: Wenbo Zhang, Yang Li, Yanyuan Qiao, Siyuan Huang, Jiajun Liu, Feras Dayoub, Xiao Ma, Lingqiao Liu,
- Abstract summary: Generalist robot manipulation policies (GMPs) have the potential to generalize across a wide range of tasks, devices, and environments.
While fine-tuning offers a practical way to quickly adapt a GMPs to novel domains and tasks with limited samples, we observe that the performance of the resulting GMPs differs significantly with respect to the design choices of fine-tuning strategies.
- Score: 45.36380662552082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalist robot manipulation policies (GMPs) have the potential to generalize across a wide range of tasks, devices, and environments. However, existing policies continue to struggle with out-of-distribution scenarios due to the inherent difficulty of collecting sufficient action data to cover extensively diverse domains. While fine-tuning offers a practical way to quickly adapt a GMPs to novel domains and tasks with limited samples, we observe that the performance of the resulting GMPs differs significantly with respect to the design choices of fine-tuning strategies. In this work, we first conduct an in-depth empirical study to investigate the effect of key factors in GMPs fine-tuning strategies, covering the action space, policy head, supervision signal and the choice of tunable parameters, where 2,500 rollouts are evaluated for a single configuration. We systematically discuss and summarize our findings and identify the key design choices, which we believe give a practical guideline for GMPs fine-tuning. We observe that in a low-data regime, with carefully chosen fine-tuning strategies, a GMPs significantly outperforms the state-of-the-art imitation learning algorithms. The results presented in this work establish a new baseline for future studies on fine-tuned GMPs, and provide a significant addition to the GMPs toolbox for the community.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - POTEC: Off-Policy Learning for Large Action Spaces via Two-Stage Policy
Decomposition [40.851324484481275]
We study off-policy learning of contextual bandit policies in large discrete action spaces.
We propose a novel two-stage algorithm, called Policy Optimization via Two-Stage Policy Decomposition.
We show that POTEC provides substantial improvements in OPL effectiveness particularly in large and structured action spaces.
arXiv Detail & Related papers (2024-02-09T03:01:13Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
We propose Diverse Policy Optimization (DPO) to model the policies in structured action space as the energy-based models (EBM)
A novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler.
Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies.
arXiv Detail & Related papers (2023-02-23T10:48:09Z) - G-MAP: General Memory-Augmented Pre-trained Language Model for Domain
Tasks [68.87524746922263]
We propose a new framework of General Memory Augmented Pre-trained Language Model (G-MAP)
G-MAP augments the domain-specific PLM by a memory representation built from the frozen general PLM without losing any general knowledge.
We demonstrate the effectiveness of G-MAP on various domains (biomedical and computer science publications, news, and reviews) and different kinds (text classification, QA, NER) of tasks.
arXiv Detail & Related papers (2022-12-07T13:07:24Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Direct Random Search for Fine Tuning of Deep Reinforcement Learning
Policies [5.543220407902113]
We show that a direct random search is very effective at fine-tuning DRL policies by directly optimizing them using deterministic rollouts.
Our results show that this method yields more consistent and higher performing agents on the environments we tested.
arXiv Detail & Related papers (2021-09-12T20:12:46Z) - Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward
Model [24.030426634281643]
In continuous control tasks, widely used policies with Gaussian distributions results in ineffective exploration of environments.
We propose a density-free off-policy algorithm, Generative Actor-Critic, using the push-forward model to increase the expressiveness of policies.
We show that push-forward policies possess desirable features, such as multi-modality, which can improve the efficiency of exploration and performance of algorithms obviously.
arXiv Detail & Related papers (2021-05-08T16:29:20Z) - Causal Policy Gradients [6.123324869194195]
Causal policy gradients (CPGs) provide a common framework for analysing key state-of-the-art algorithms.
CPGs are shown to generalise traditional policy gradients, and yield a principled way of incorporating prior knowledge of a problem domain's generative processes.
arXiv Detail & Related papers (2021-02-20T14:51:12Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms.
Specifically, we investigate the consequences of "code-level optimizations:"
Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function.
arXiv Detail & Related papers (2020-05-25T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.