Takin-VC: Zero-shot Voice Conversion via Jointly Hybrid Content and Memory-Augmented Context-Aware Timbre Modeling
- URL: http://arxiv.org/abs/2410.01350v1
- Date: Wed, 2 Oct 2024 09:07:33 GMT
- Title: Takin-VC: Zero-shot Voice Conversion via Jointly Hybrid Content and Memory-Augmented Context-Aware Timbre Modeling
- Authors: Yuguang Yang, Yu Pan, Jixun Yao, Xiang Zhang, Jianhao Ye, Hongbin Zhou, Lei Xie, Lei Ma, Jianjun Zhao,
- Abstract summary: Takin-VC is a novel zero-shot VC framework based on jointly hybrid content and memory-augmented context-aware timbre modeling.
Experimental results demonstrate that the proposed Takin-VC method surpasses state-of-the-art zero-shot VC systems.
- Score: 14.98368067290024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zero-shot voice conversion (VC) aims to transform the source speaker timbre into an arbitrary unseen one without altering the original speech content.While recent advancements in zero-shot VC methods have shown remarkable progress, there still remains considerable potential for improvement in terms of improving speaker similarity and speech naturalness.In this paper, we propose Takin-VC, a novel zero-shot VC framework based on jointly hybrid content and memory-augmented context-aware timbre modeling to tackle this challenge. Specifically, an effective hybrid content encoder, guided by neural codec training, that leverages quantized features from pre-trained WavLM and HybridFormer is first presented to extract the linguistic content of the source speech. Subsequently, we introduce an advanced cross-attention-based context-aware timbre modeling approach that learns the fine-grained, semantically associated target timbre features. To further enhance both speaker similarity and real-time performance, we utilize a conditional flow matching model to reconstruct the Mel-spectrogram of the source speech. Additionally, we advocate an efficient memory-augmented module designed to generate high-quality conditional target inputs for the flow matching process, thereby improving the overall performance of the proposed system. Experimental results demonstrate that the proposed Takin-VC method surpasses state-of-the-art zero-shot VC systems, delivering superior performance in terms of both speech naturalness and speaker similarity.
Related papers
- CTEFM-VC: Zero-Shot Voice Conversion Based on Content-Aware Timbre Ensemble Modeling and Flow Matching [7.144608815694702]
CTEFM-VC is a framework that disentangles utterances into linguistic content and timbre representations.
To enhance its timbre modeling capability and the naturalness of generated speech, we propose a context-aware timbre ensemble modeling approach.
arXiv Detail & Related papers (2024-11-04T12:23:17Z) - CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech.
It still suffers from low speaker similarity and poor prosody naturalness.
We propose a multi-modal DSR model by leveraging neural language modeling to improve the reconstruction results.
arXiv Detail & Related papers (2024-06-12T15:42:21Z) - SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation [56.913182262166316]
Chain-of-Information Generation (CoIG) is a method for decoupling semantic and perceptual information in large-scale speech generation.
SpeechGPT-Gen is efficient in semantic and perceptual information modeling.
It markedly excels in zero-shot text-to-speech, zero-shot voice conversion, and speech-to-speech dialogue.
arXiv Detail & Related papers (2024-01-24T15:25:01Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Speech Representation Disentanglement with Adversarial Mutual
Information Learning for One-shot Voice Conversion [42.43123253495082]
One-shot voice conversion (VC) with only a single target speaker's speech for reference has become a hot research topic.
We employ random resampling for pitch and content encoder and use the variational contrastive log-ratio upper bound of mutual information to disentangle speech components.
Experiments on the VCTK dataset show the model achieves state-of-the-art performance for one-shot VC in terms of naturalness and intellgibility.
arXiv Detail & Related papers (2022-08-18T10:36:27Z) - Robust Disentangled Variational Speech Representation Learning for
Zero-shot Voice Conversion [34.139871476234205]
We investigate zero-shot voice conversion from a novel perspective of self-supervised disentangled speech representation learning.
A zero-shot voice conversion is performed by feeding an arbitrary speaker embedding and content embeddings to a sequential variational autoencoder (VAE) decoder.
On TIMIT and VCTK datasets, we achieve state-of-the-art performance on both objective evaluation, i.e., speaker verification (SV) on speaker embedding and content embedding, and subjective evaluation, i.e. voice naturalness and similarity, and remains to be robust even with noisy source/target utterances.
arXiv Detail & Related papers (2022-03-30T23:03:19Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - Voicy: Zero-Shot Non-Parallel Voice Conversion in Noisy Reverberant
Environments [76.98764900754111]
Voice Conversion (VC) is a technique that aims to transform the non-linguistic information of a source utterance to change the perceived identity of the speaker.
We propose Voicy, a new VC framework particularly tailored for noisy speech.
Our method, which is inspired by the de-noising auto-encoders framework, is comprised of four encoders (speaker, content, phonetic and acoustic-ASR) and one decoder.
arXiv Detail & Related papers (2021-06-16T15:47:06Z) - An Adaptive Learning based Generative Adversarial Network for One-To-One
Voice Conversion [9.703390665821463]
We propose an adaptive learning-based GAN model called ALGAN-VC for an efficient one-to-one VC of speakers.
The model is tested on Voice Conversion Challenge (VCC) 2016, 2018, and 2020 datasets as well as on our self-prepared speech dataset.
A subjective and objective evaluation of the generated speech samples indicated that the proposed model elegantly performed the voice conversion task.
arXiv Detail & Related papers (2021-04-25T13:44:32Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.