Toward Zero-Shot Learning for Visual Dehazing of Urological Surgical Robots
- URL: http://arxiv.org/abs/2410.01395v1
- Date: Wed, 2 Oct 2024 10:16:42 GMT
- Title: Toward Zero-Shot Learning for Visual Dehazing of Urological Surgical Robots
- Authors: Renkai Wu, Xianjin Wang, Pengchen Liang, Zhenyu Zhang, Qing Chang, Hao Tang,
- Abstract summary: In transurethral suburethral urological surgical robots, they need to work in a liquid environment.
This causes vaporization of the liquid when shearing and heating is performed, resulting in bubble atomization.
We propose an unsupervised zero-shot dehaze method (RSF-Dehaze) for urological surgical robotic vision.
- Score: 10.797307519651405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot-assisted surgery has profoundly influenced current forms of minimally invasive surgery. However, in transurethral suburethral urological surgical robots, they need to work in a liquid environment. This causes vaporization of the liquid when shearing and heating is performed, resulting in bubble atomization that affects the visual perception of the robot. This can lead to the need for uninterrupted pauses in the surgical procedure, which makes the surgery take longer. To address the atomization characteristics of liquids under urological surgical robotic vision, we propose an unsupervised zero-shot dehaze method (RSF-Dehaze) for urological surgical robotic vision. Specifically, the proposed Region Similarity Filling Module (RSFM) of RSF-Dehaze significantly improves the recovery of blurred region tissues. In addition, we organize and propose a dehaze dataset for robotic vision in urological surgery (USRobot-Dehaze dataset). In particular, this dataset contains the three most common urological surgical robot operation scenarios. To the best of our knowledge, we are the first to organize and propose a publicly available dehaze dataset for urological surgical robot vision. The proposed RSF-Dehaze proves the effectiveness of our method in three urological surgical robot operation scenarios with extensive comparative experiments with 20 most classical and advanced dehazing and image recovery algorithms. The proposed source code and dataset are available at https://github.com/wurenkai/RSF-Dehaze .
Related papers
- Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - SAMSNeRF: Segment Anything Model (SAM) Guides Dynamic Surgical Scene
Reconstruction by Neural Radiance Field (NeRF) [4.740415113160021]
We propose a novel approach called SAMSNeRF that combines Segment Anything Model (SAM) and Neural Radiance Field (NeRF) techniques.
Our experimental results on public endoscopy surgical videos demonstrate that our approach successfully reconstructs high-fidelity dynamic surgical scenes.
arXiv Detail & Related papers (2023-08-22T20:31:00Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
We introduce Demonstration-guided EXploration (DEX), an efficient reinforcement learning algorithm.
Our method estimates expert-like behaviors with higher values to facilitate productive interactions.
Experiments on $10$ surgical manipulation tasks from SurRoL, a comprehensive surgical simulation platform, demonstrate significant improvements.
arXiv Detail & Related papers (2023-02-20T05:38:54Z) - Collaborative Robotic Ultrasound Tissue Scanning for Surgical Resection
Guidance in Neurosurgery [1.372026330898297]
The aim of this paper is to introduce a robotic platform for autonomous iUS tissue scanning.
A key application of the proposed platform is the scanning of brain tissue to guide tumour resection.
arXiv Detail & Related papers (2023-01-19T17:05:07Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Integrating Artificial Intelligence and Augmented Reality in Robotic
Surgery: An Initial dVRK Study Using a Surgical Education Scenario [15.863254207155835]
We develop a novel robotic surgery education system by integrating artificial intelligence surgical module and augmented reality visualization.
The proposed system is evaluated through a preliminary experiment on surgical education task peg-transfer.
arXiv Detail & Related papers (2022-01-02T17:34:10Z) - The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges
and methods [15.833413083110903]
This paper presents ESAD, the first large-scale dataset designed to tackle the problem of surgeon action detection in endoscopic minimally invasive surgery.
The dataset provides bounding box annotation for 21 action classes on real endoscopic video frames captured during prostatectomy, and was used as the basis of a recent MIDL 2020 challenge.
arXiv Detail & Related papers (2021-04-07T15:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.