Scalable Reinforcement Learning-based Neural Architecture Search
- URL: http://arxiv.org/abs/2410.01431v1
- Date: Wed, 2 Oct 2024 11:31:48 GMT
- Title: Scalable Reinforcement Learning-based Neural Architecture Search
- Authors: Amber Cassimon, Siegfried Mercelis, Kevin Mets,
- Abstract summary: We assess the ability of a novel Reinforcement Learning-based solution to the problem of Neural Architecture Search.
We consider both the NAS-Bench-101 and NAS- Bench-301 settings, and compare against various known strong baselines, such as local search and random search.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this publication, we assess the ability of a novel Reinforcement Learning-based solution to the problem of Neural Architecture Search, where a Reinforcement Learning (RL) agent learns to search for good architectures, rather than to return a single optimal architecture. We consider both the NAS-Bench-101 and NAS- Bench-301 settings, and compare against various known strong baselines, such as local search and random search. We conclude that our Reinforcement Learning agent displays strong scalability with regards to the size of the search space, but limited robustness to hyperparameter changes.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - Resource-Constrained Neural Architecture Search on Tabular Datasets [38.765317261872504]
The best neural architecture for a given machine learning problem depends on many factors, including the complexity and structure of the dataset.
Previous NAS algorithms incorporate resource constraints directly into the reinforcement learning rewards.
We propose a new reinforcement learning controller to address these challenges.
arXiv Detail & Related papers (2022-04-15T19:03:25Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
We present an approach called Conceptual Expansion Neural Architecture Search (CENAS)
It combines a sample-efficient, computational creativity-inspired transfer learning approach with neural architecture search.
It finds models faster than naive architecture search via transferring existing weights to approximate the parameters of the new model.
arXiv Detail & Related papers (2021-10-07T02:29:26Z) - D-DARTS: Distributed Differentiable Architecture Search [75.12821786565318]
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods.
We propose D-DARTS, a novel solution that addresses this problem by nesting several neural networks at cell-level.
arXiv Detail & Related papers (2021-08-20T09:07:01Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms.
This paper revisits the role of unrolling as a design approach for deep networks, to what extent its resulting special architecture is superior, and can we find better?
Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models.
arXiv Detail & Related papers (2021-04-08T23:01:52Z) - Pretraining Neural Architecture Search Controllers with Locality-based
Self-Supervised Learning [0.0]
We propose a pretraining scheme that can be applied to controller-based NAS.
Our method, locality-based self-supervised classification task, leverages the structural similarity of network architectures to obtain good architecture representations.
arXiv Detail & Related papers (2021-03-15T06:30:36Z) - On Adversarial Robustness: A Neural Architecture Search perspective [20.478741635006113]
This work is the first large-scale study to understand adversarial robustness purely from an architectural perspective.
We show that random sampling in the search space of DARTS with simple ensembling can improve the robustness to PGD attack by nearly12%.
We show that NAS, which is popular for achieving SoTA accuracy, can provide adversarial accuracy as a free add-on without any form of adversarial training.
arXiv Detail & Related papers (2020-07-16T16:07:10Z) - Breaking the Curse of Space Explosion: Towards Efficient NAS with
Curriculum Search [94.46818035655943]
We propose a curriculum search method that starts from a small search space and gradually incorporates the learned knowledge to guide the search in a large space.
With the proposed search strategy, our Curriculum Neural Architecture Search (CNAS) method significantly improves the search efficiency and finds better architectures than existing NAS methods.
arXiv Detail & Related papers (2020-07-07T02:29:06Z) - Learning Architectures from an Extended Search Space for Language
Modeling [37.79977691127229]
We present a general approach to learn both intra-cell and inter-cell architectures of Neural architecture search (NAS)
For recurrent neural language modeling, it outperforms a strong baseline significantly on the PTB and WikiText data, with a new state-of-the-art on PTB.
The learned architectures show good transferability to other systems.
arXiv Detail & Related papers (2020-05-06T05:02:33Z) - RC-DARTS: Resource Constrained Differentiable Architecture Search [162.7199952019152]
We propose the resource constrained differentiable architecture search (RC-DARTS) method to learn architectures that are significantly smaller and faster.
We show that the RC-DARTS method learns lightweight neural architectures which have smaller model size and lower computational complexity.
arXiv Detail & Related papers (2019-12-30T05:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.